Simple average expression for shear-stress relaxation modulus
被引:11
|
作者:
Wittmer, J. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
CNRS, F-67034 Strasbourg, FranceUniv Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
Wittmer, J. P.
[1
,2
]
Xu, H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lorraine, Inst Jean Barriol, LCP A2MC, F-57078 Metz 03, France
CNRS, F-57078 Metz 03, FranceUniv Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
Xu, H.
[3
,4
]
Baschnagel, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
CNRS, F-67034 Strasbourg, FranceUniv Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
Baschnagel, J.
[1
,2
]
机构:
[1] Univ Strasbourg, Inst Charles Sadron, F-67034 Strasbourg, France
[2] CNRS, F-67034 Strasbourg, France
[3] Univ Lorraine, Inst Jean Barriol, LCP A2MC, F-57078 Metz 03, France
Focusing on isotropic elastic networks we propose a simple-average expression G(t) = mu(A) - h(t) for the computational determination of the shear-stress relaxation modulus G(t) of a classical elastic solid or fluid. Here, mu(A) = G(0) characterizes the shear transformation of the system at t = 0 and h(t) the (rescaled) mean-square displacement of the instantaneous shear stress (tau) over cap (t) as a function of time t. We discuss sampling time and ensemble effects and emphasize possible pitfalls of alternative expressions using the shear-stress autocorrelation function. We argue finally that our key relation may be readily adapted for more general linear response functions.