The importance of three physical processes in a minimal three-dimensional tropical cyclone model

被引:0
|
作者
Zhu, HY [1 ]
Smith, RK [1 ]
机构
[1] Univ Munich, Inst Meteorol, D-80333 Munich, Germany
关键词
D O I
10.1175/1520-0469(2002)059<1825:TIOTPP>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in sigma coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale. In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate. The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate. Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period. Where possible the results are compared with those found in other studies.
引用
收藏
页码:1825 / 1840
页数:16
相关论文
共 50 条
  • [21] Global attractor for the three-dimensional Bardina tropical climate model
    Berti, Diego
    Bisconti, Luca
    Catania, Davide
    APPLICABLE ANALYSIS, 2023, 102 (18) : 5123 - 5131
  • [22] Solution and validation of a three dimensional tropical cyclone boundary layer wind field model
    Hong, Xu
    Hong, H. P.
    Li, Jie
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 193
  • [23] Importance of Three-Dimensional Modeling in Cranioplasty
    Aydin, Hasan Emre
    Kaya, Ismail
    Aydin, Nevin
    Kizmazoglu, Ceren
    Karakoc, Feridun
    Yurt, Hidayet
    Husemoglu, Resit Bugra
    JOURNAL OF CRANIOFACIAL SURGERY, 2019, 30 (03) : 713 - 715
  • [24] Modifications to Three-Dimensional Turbulence Parameterization for Tropical Cyclone Simulation at Convection-Permitting Resolution
    Ye, Gengjiao
    Zhang, Xu
    Yu, Hui
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2023, 15 (04)
  • [25] Study of the Processes of Electroosmotic Cleaning of Soils from Oil Pollution on a Three-dimensional Physical Model
    Shabanov, Evgeniy
    VTH INTERNATIONAL INNOVATIVE MINING SYMPOSIUM, 2020, 174
  • [26] Numerical modelling the three-dimensional velocity field in the cyclone
    Vatin, N. I.
    Girgidov, A. A.
    Strelets, K. I.
    MAGAZINE OF CIVIL ENGINEERING, 2011, 23 (05): : 3 - 68
  • [27] Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow
    Lauricella, Marco
    Pisignano, Dario
    Succi, Sauro
    JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (27): : 4884 - 4892
  • [28] Three-dimensional model of flow and mixing processes in open channels
    Czernuszenko, W
    Rylov, A
    Water Quality Hazards and Dispersion of Pollutants, 2005, : 35 - 54
  • [29] Three-Dimensional Modeling of Machining Processes
    Miguelez, H.
    Santiuste, C.
    Diaz, J.
    Soldani, X.
    Cantero, J. L.
    ADVANCES IN MATERIALS PROCESSING TECHNOLOGIES, 2012, 498 : 255 - +
  • [30] Three-dimensional volume datafield reconstruction from physical model
    Feng Dong
    Wenli Cai
    Tianzhou Chen
    Jiaoying Shi
    Journal of Computer Science and Technology, 1997, 12 (3) : 217 - 230