Climate change impact assessment of a river basin using CMIP5 climate models and the VIC hydrological model

被引:26
|
作者
Hengade, Narendra [1 ]
Eldho, T. I. [1 ,2 ]
Ghosh, Subimal [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Civil Engn, Bombay, Maharashtra, India
[2] Indian Inst Technol, Interdisciplinary Program Climate Studies, Bombay, Maharashtra, India
关键词
climate change; Godavari River Basin; variable infiltration capacity (VIC) model; statistical downscaling model; DOWNSCALING TECHNIQUES; MONSOON RAINFALL; INDIAN MONSOON; GLOBAL RIVERS; DATA SET; SIMULATIONS; REGION; UNCERTAINTY; PROJECTIONS; CATCHMENT;
D O I
10.1080/02626667.2018.1441531
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Climate change has significant impacts on water availability in larger river basins. The present study evaluates the possible impacts of projected future daily rainfall (2011-2099) on the hydrology of a major river basin in peninsular India, the Godavari River Basin, (GRB), under RCP4.5 and RCP8.5 scenarios. The study highlights a criteria-based approach for selecting the CMIP5 GCMs, based on their fidelity in simulating the Indian Summer Monsoon rainfall. The nonparametric kernel regression based statistical downscaling model is employed to project future daily rainfall and the variable infiltration capacity (VIC) macroscale hydrological model is used for hydrological simulations. The results indicate an increase in future rainfall without significant change in the spatial pattern of hydrological variables in the GRB. The climate-change-induced projected hydrological changes provide a crucial input to define water resource policies in the GRB. This methodology can be adopted for the climate change impacts assessment of larger river basins worldwide.
引用
下载
收藏
页码:596 / 614
页数:19
相关论文
共 50 条
  • [31] Bjerknes Compensation in the CMIP5 Climate Models
    Outten, Stephen
    Esau, Igor
    Ottera, Odd Helge
    JOURNAL OF CLIMATE, 2018, 31 (21) : 8745 - 8760
  • [32] A comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China
    Guo, Yuxue
    Yu, Xinting
    Xu, Yue-Ping
    Wang, Guoqing
    Xie, Jingkai
    Gu, Haiting
    HYDROLOGY RESEARCH, 2022, 53 (06): : 867 - 891
  • [33] Investigating the effects of climate change on future hydrological drought in mountainous basins using SWAT model based on CMIP5 model
    Alireza Samavati
    Omid Babamiri
    Yousef Rezai
    Morteza Heidarimozaffar
    Stochastic Environmental Research and Risk Assessment, 2023, 37 : 849 - 875
  • [34] Climate change signals of CMIP5 general circulation models over the Alps-impact of model selection
    Zubler, Elias M.
    Fischer, Andreas M.
    Frob, Friederike
    Liniger, Mark A.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2016, 36 (08) : 3088 - 3104
  • [35] Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs
    Xiang, Yanyun
    Wang, Yi
    Chen, Yaning
    Zhang, Qifei
    REMOTE SENSING, 2022, 14 (01)
  • [36] Investigating Hydrological Drought Characteristics in Northeastern Thailand in CMIP5 Climate Change Scenarios
    Chatklang, Sornsawan
    Tongdeenok, Piyapong
    Kaewjampa, Naruemol
    ATMOSPHERE, 2024, 15 (09)
  • [37] Assessment of climate change impact in the hydrological regime of River Pinios Basin, central Greece
    Panagopoulos, A.
    Arampatzis, G.
    Tziritis, E.
    Pisinaras, V.
    Herrmann, F.
    Kunkel, R.
    Wendland, F.
    DESALINATION AND WATER TREATMENT, 2016, 57 (05) : 2256 - 2267
  • [38] CLIMATE CHANGE IMPACT ASSESSMENT ON VARIOUS COMPONENTS OF THE HYDROLOGICAL REGIME OF THE MALE RIVER BASIN
    Nemeckova, Sona
    Slamova, Romana
    Sipek, Vaclav
    JOURNAL OF HYDROLOGY AND HYDROMECHANICS, 2011, 59 (02) : 131 - 143
  • [39] Assessment of Precipitation Simulations in Central Asia by CMIP5 Climate Models
    Ta, Zhijie
    Yu, Yang
    Sun, Lingxiao
    Chen, Xi
    Mu, Guijin
    Yu, Ruide
    WATER, 2018, 10 (11)
  • [40] Projecting Hydrological Responses to Climate Change Using CMIP6 Climate Scenarios for the Upper Huai River Basin, China
    Bian, Guodong
    Zhang, Jianyun
    Chen, Jie
    Song, Mingming
    He, Ruimin
    Liu, Cuishan
    Liu, Yanli
    Bao, Zhenxin
    Lin, Qianguo
    Wang, Guoqing
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2021, 9