Molecular site for nucleotide binding on an ATP-sensitive renal K+ channel (ROMK2)

被引:52
|
作者
McNicholas, CM
Yang, YH
Giebisch, G
Hebert, SC
机构
[1] YALE UNIV, SCH MED, DEPT CELLULAR & MOL PHSYIOL, NEW HAVEN, CT 06520 USA
[2] HARVARD UNIV, SCH MED, BOSTON, MA 02115 USA
[3] BRIGHAM & WOMENS HOSP, DEPT MED, DIV RENAL, LAB MOL PHYSIOL & BIOPHYS, BOSTON, MA 02115 USA
关键词
inwardly rectifying potassium channel; adenosine 5'-triphosphate-dependent regulation; protein kinase A; Xenopus oocytes; site-directed mutagenesis;
D O I
10.1152/ajprenal.1996.271.2.F275
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
ATP-sensitive, inwardly rectifying K+ channels are present in apical membranes of the distal nephron and play a major role in K+ recycling and secretion. The cloned renal K+ channel, ROMK1, is a candidate for the renal epithelial K+ channel, since it shares many functional characteristics with the native channel. Additionally, ROMK1 contains a putative carboxy-terminal ATP-binding site. Although ROMK1 channel activity could be reactivated by cytosolic Mg-ATP after rundown, the role of nucleotides in channel gating was less certain. We now show that an alternatively spliced transcript of the ROMK channel gene, ROMK2, which encodes a K+ channel with a truncated amino terminus, expresses an ATP-regulated and ATP-sensitive K+ channel (I-KATP). Differences in the amino terminus of ROMK isoforms alters the sensitivity of the channel-gating mechanism to ATP. To test whether ATP sensitivity of renal I-KATP is mediated by direct interaction of nucleotide, point mutation of specific residues within the ROMK2 phosphate loop (P-loop) were investigated. These either enhanced or attenuated the sensitivity to both activation and inhibition by Mg-ATP, thus demonstrating a direct interaction of nucleotide with the channel-forming polypeptide.
引用
收藏
页码:F275 / F285
页数:11
相关论文
共 50 条