Atomically dispersed Cu species on a TiO2(110) surface precovered with acetic anhydride

被引:9
|
作者
Chun, Wang-Jae [1 ,2 ,3 ]
Koike, Yuichiro [1 ,2 ,4 ]
Ashima, Hidenori [1 ,2 ]
Kinoshita, Kumiko [1 ,2 ,5 ]
Ijima, Kaoru [6 ]
Fujikawa, Keisuke [1 ,2 ,5 ]
Suzuki, Shushi [1 ,2 ]
Nomura, Masaharu [4 ]
Iwasawa, Yasuhiro [7 ]
Asakura, Kiyotaka [1 ,2 ,5 ]
机构
[1] Hokkaido Univ, Precise Surface Design Cluster Grp, Sapporo, Hokkaido 0010021, Japan
[2] Hokkaido Univ, Act Struct Surface Chem Div, Catalysis Res Ctr, Sapporo, Hokkaido 0010021, Japan
[3] Int Christian Univ, Dept Chem, Tokyo 1818585, Japan
[4] High Energy Accelerator Res Org, Photon Factory, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan
[5] Hokkaido Univ, Dept Quantum Sci & Engn, Fac Engn, Sapporo, Hokkaido 0010021, Japan
[6] Univ Yamanashi, Dept Elect Engn, Yamanashi 4008510, Japan
[7] Univ Tokyo, Dept Chem, Grad Sch Sci, Tokyo 1130081, Japan
基金
日本科学技术振兴机构;
关键词
TIO2; 110; SURFACE; INDUCED DISSOCIATION; SIZE DISTRIBUTIONS; COPPER ISLANDS; GROWTH; ADSORPTION; ATOMS;
D O I
10.1016/j.cplett.2009.01.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Preparing highly dispersed monoatomic Cu species on a TiO2(110) surface was successfully achieved on a TiO2(110) surface that had been precovered with an acetic anhydride layer. Polarization-dependent total reflection fluorescence X-ray absorption. ne structure (PTRF-XAFS) spectra indicated that the three-dimensional structures of the monoatomic Cu species were stabilized on the surface by two 0.196-nm-long C-O bonds, namely, Cu-O (acetate) and Cu-O (bridging surface oxygen) bonds. The Cu species diffusion was effectively blocked by the acetate species with its molecular plane perpendicular to the [001] diffusion direction created by the dissociative adsorption of acetic anhydride. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 102
页数:4
相关论文
共 50 条
  • [31] Preparation of highly dispersed Cu on TiO2 using Cu(II) complexes
    Nagashima, K
    Kokusen, H
    Ueno, N
    Matsuyoshi, A
    Kosaka, T
    Hasegawa, M
    Hoshi, T
    Ebitani, K
    Kaneda, K
    Aritani, H
    Hasegawa, S
    CHEMISTRY LETTERS, 2000, (03) : 264 - 265
  • [32] Hydrogen capture by porphyrins at the TiO2(110) surface
    Lovat, Giacomo
    Forrer, Daniel
    Abadia, Mikel
    Dominguez, Marcos
    Casarin, Maurizio
    Rogero, Celia
    Vittadini, Andrea
    Floreano, Luca
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (44) : 30119 - 30124
  • [33] Chromyl chloride chemistry on the TiO2(110) surface
    Alam, M
    Henderson, MA
    Kaviratna, PD
    Herman, GS
    Peden, CHF
    JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (01): : 111 - 122
  • [34] Atomistic insight into surface reactions on TiO2(110).
    Erik, W
    Vestergaard, EK
    Schaub, R
    Ronnau, A
    Matthiesen, J
    Besenbacher, F
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U815 - U815
  • [35] Theoretical analysis on TiO2(110)/V surface
    Sambrano, JR
    Martins, JBL
    Andres, J
    Longo, E
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 85 (01) : 44 - 51
  • [36] Photoresponse of surface oxygen defects on TiO2(110)
    Komiyama, M
    Li, YJ
    APPLIED SURFACE SCIENCE, 2005, 244 (1-4) : 550 - 553
  • [37] THE ADSORPTION AND PHOTODESORPTION OF OXYGEN ON THE TIO2(110) SURFACE
    LU, GQ
    LINSEBIGLER, A
    YATES, JT
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (11): : 4657 - 4662
  • [38] Probing organic layers on the TiO2(110) surface
    Foster, AS
    Gal, AY
    Nieminen, RM
    Shluger, AL
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (10): : 4554 - 4560
  • [39] Decomposition and protonation of surface ethoxys on TiO2(110)
    Gamble, L
    Jung, LS
    Campbell, CT
    SURFACE SCIENCE, 1996, 348 (1-2) : 1 - 16
  • [40] CO photooxidation on reduced TiO2(110) surface
    Petrik, Nikolay
    Kimmel, Gregory
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242