STRONG-STABILITY-PRESERVING ADDITIVE LINEAR MULTISTEP METHODS

被引:2
|
作者
Hadjimichael, Yiannis [1 ,2 ,3 ]
Ketcheson, David I. [1 ]
机构
[1] 4700 King Abdullah Univ Sci & Technol KAUST, Thuwal 239556900, Saudi Arabia
[2] Eotvos Lorand Univ, MTA ELTE Numer Anal & Large Networks Res Grp, Pazmany Peter Setany 1-C, H-1117 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Differential Equat, Bldg H,Egry Jozsef Utca 1, H-1111 Budapest, Hungary
关键词
BOUNDEDNESS PROPERTIES; TIME DISCRETIZATIONS; GENERAL MONOTONICITY; CONTRACTIVITY; SCHEMES;
D O I
10.1090/mcom/3296
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The analysis of strong-stability-preserving (SSP) linear multistep methods is extended to semi-discretized problems for which different terms on the right-hand side satisfy different forward Euler (or circle) conditions. Optimal perturbed and additive monotonicity-preserving linear multistep methods are studied in the context of such problems. Optimal perturbed methods attain larger monotonicity-preserving step sizes when the different forward Euler conditions are taken into account. On the other hand, we show that optimal SSP additive methods achieve a monotonicity-preserving step-size restriction no better than that of the corresponding nonadditive SSP linear multistep methods.
引用
收藏
页码:2295 / 2320
页数:26
相关论文
共 50 条
  • [21] Construction of Strong Stability Preserving General Linear Methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [22] On the stability of strong-stability-preserving modified Patankar-Runge-Kutta schemes
    Huang, Juntao
    Izgin, Thomas
    Kopecz, Stefan
    Meister, Andreas
    Shu, Chi-Wang
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (02) : 1063 - 1086
  • [23] Strong-stability-preserving 3-stage Hermite-Birkhoff time-discretization methods
    Truong Nguyen-Ba
    Huong Nguyen-Thu
    Giordano, Thierry
    Vaillancourt, Remi
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (04) : 487 - 500
  • [24] Strong Stability Preserving General Linear Methods with Runge–Kutta Stability
    Giovanna Califano
    Giuseppe Izzo
    Zdzisław Jackiewicz
    Journal of Scientific Computing, 2018, 76 : 943 - 968
  • [25] Strong-Stability-Preserving 7-Stage Hermite-Birkhoff Time-Discretization Methods
    Truong Nguyen-Ba
    Huong Nguyen-Thu
    Giordano, Thierry
    Vaillancourt, Remi
    JOURNAL OF SCIENTIFIC COMPUTING, 2012, 50 (01) : 63 - 90
  • [26] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Inmaculada Higueras
    Journal of Scientific Computing, 2009, 39 : 115 - 128
  • [27] Characterizing Strong Stability Preserving Additive Runge-Kutta Methods
    Higueras, Inmaculada
    JOURNAL OF SCIENTIFIC COMPUTING, 2009, 39 (01) : 115 - 128
  • [28] Implicit-explicit methods based on strong stability preserving multistep time discretizations
    Gjesdal, Thor
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (08) : 911 - 919
  • [29] Strong Stability Preserving Second Derivative General Linear Methods
    Moradi, Afsaneh
    Farzi, Javad
    Abdi, Ali
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (01) : 392 - 435
  • [30] Strong Stability Preserving Second Derivative General Linear Methods
    Afsaneh Moradi
    Javad Farzi
    Ali Abdi
    Journal of Scientific Computing, 2019, 81 : 392 - 435