ESTIMATION OF MULTIVARIATE MEANS WITH HETEROSCEDASTIC ERRORS USING ENVELOPE MODELS

被引:24
|
作者
Su, Zhihua
Cook, R. Dennis [1 ]
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; envelope model; Grassmann manifold; reducing subspace;
D O I
10.5705/ss.2010.240
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose envelope models that accommodate heteroscedastic error structure in the framework of estimating multivariate means for different populations. Envelope models were introduced by Cook, Li, and Chiaromente (2010) as a parsimonious version of multivariate linear regression that achieves efficient estimation of the coefficients by linking the mean function and the covariance structure. In the original development, constant covariance structure was assumed. The heteroscedastic envelope models we propose are more flexible in allowing a more general covariance structure. Their asymptotic variances and Fisher consistency are studied. Simulations and data examples show that they are more efficient than standard methods of estimating the multivariate means, and also more efficient than the envelope model assuming constant covariance structure.
引用
收藏
页码:213 / 230
页数:18
相关论文
共 50 条
  • [21] Orthogonality-projection-based estimation for semi-varying coefficient models with heteroscedastic errors
    Zhao, Yan-Yong
    Lin, Jin-Guan
    Xu, Pei-Rong
    Ye, Xu-Guo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 89 : 204 - 221
  • [22] Minimax robust designs for regression models with heteroscedastic errors
    Kai Yzenbrandt
    Julie Zhou
    Metrika, 2022, 85 : 203 - 222
  • [23] Parametric inference of autoregressive heteroscedastic models with errors in variables
    El Kolei, Salima
    Pelgrin, Florian
    STATISTICS & PROBABILITY LETTERS, 2017, 130 : 63 - 70
  • [24] Minimax robust designs for regression models with heteroscedastic errors
    Yzenbrandt, Kai
    Zhou, Julie
    METRIKA, 2022, 85 (02) : 203 - 222
  • [25] Detection and estimation of heteroscedastic noise by means of the wavelet transform
    Mittermayr, CR
    Rosenberg, E
    Grasserbauer, M
    ANALYTICAL COMMUNICATIONS, 1997, 34 (02): : 73 - 75
  • [26] Maximum likelihood estimation and inference in multivariate conditionally heteroscedastic dynamic regression models with student t innovations
    Fiorentini, G
    Sentana, E
    Calzolari, G
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (04) : 532 - 546
  • [27] Statistical estimation for heteroscedastic semiparametric regression model with random errors
    Ding, Liwang
    Chen, Ping
    JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (04) : 940 - 969
  • [28] Nonparametric regression estimation in the heteroscedastic errors-in-variables problem
    Delaigle, Aurore
    Meister, Alexander
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (480) : 1416 - 1426
  • [29] Robust Estimation of Regression Parameters with Heteroscedastic Errors in the Presence of Outliers
    Midi, Habshah
    Rana, Sohel
    Imon, A. H. M. R.
    PROCEEDINGS OF THE 8TH WSEAS INTERNATIONAL CONFERENCE ON APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE: APPLIED COMPUTER AND APPLIED COMPUTATIONAL SCIENCE, 2009, : 128 - +
  • [30] Conditional variance estimation in heteroscedastic regression models
    Chen, W-Hung
    Cheng, Ming-Yen
    Peng, Liang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (02) : 236 - 245