Nonparametric Bayes estimation of gap-time distribution with recurrent event data

被引:4
|
作者
Rahman, A. K. M. Fazlur [1 ]
Lynch, James D. [1 ]
Pena, Edsel A. [1 ]
机构
[1] Univ S Carolina, Dept Stat, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Dirichlet process; empirical Bayes; nonparametric prior; PL-type estimator; sum-quota accrual; EMPIRICAL BAYES; INCOMPLETE OBSERVATIONS; CENSORED OBSERVATIONS; RENEWAL PROCESSES; SURVIVAL FUNCTION; GENERAL-CLASS; MODELS;
D O I
10.1080/10485252.2014.906744
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Nonparametric Bayes (NPB) estimation of the gap-time survivor function governing the time to occurrence of a recurrent event in the presence of censoring is considered. In our Bayesian approach, the gap-time distribution, denoted by F, has a Dirichlet process prior with parametera alpha. We derive NP Band nonparametric empirical Bayes (NPEB) estimators of the survivor function (F) over bar = 1 - F and construct point-wise credible intervals. The resulting Bayes estimator of (F) over bar extends that based on single-event right-censored data, and the PL-type estimator is a limiting case of this Bayes estimator. Through simulation studies, we demonstrate that the PL-type estimator has smaller biases but higher root-mean-squared errors (RMSEs) than those of the NPB and the NPEB estimators. Even in the case of a mis-specified prior measure parameter alpha, the NPB and the NPEB estimators have smaller RMSEs than the PL-type estimator, indicating robustness of the NPB and NPEB estimators. In addition, the NPB and NPEB estimators are smoother (in some sense) than the PL-type estimator.
引用
收藏
页码:575 / 598
页数:24
相关论文
共 50 条
  • [21] Event-weighted proportional hazards modelling for recurrent gap time data
    Darlington, G. A.
    Dixon, S. N.
    STATISTICS IN MEDICINE, 2013, 32 (01) : 124 - 130
  • [22] Joint modeling and estimation for recurrent event processes and failure time data
    Huang, CY
    Wang, MC
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (468) : 1153 - 1165
  • [23] BAYES NONPARAMETRIC-ESTIMATION OF TIME-DEPENDENT FAILURE RATE
    COLOMBO, AG
    COSTANTINI, D
    JAARSMA, RJ
    IEEE TRANSACTIONS ON RELIABILITY, 1985, 34 (02) : 109 - 112
  • [24] Nonparametric Inference for the Recurrent Event Data with Incomplete Observation Gaps
    Kim, Jinheum
    Nam, Chung Mo
    Kim, Yang-Jin
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (04) : 621 - 632
  • [25] The IPW estimator for the joint distribution function of the gap times from recurrent event data
    Shen, Pao-sheng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (04) : 957 - 967
  • [26] Nonparametric regression estimation in a null recurrent time series
    Karlsen, Hans Arnfinn
    Myklebust, Terje
    Tjostheim, Dag
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3619 - 3626
  • [27] Nonparametric estimation of the bivariate recurrence time distribution
    Huang, CY
    Wang, MC
    BIOMETRICS, 2005, 61 (02) : 392 - 402
  • [28] On nonparametric estimation of the latent distribution for ordinal data
    Ghosh, Sujit K.
    Burns, Christopher B.
    Prager, Daniel L.
    Zhang, Li
    Hui, Glenn
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 119 : 86 - 98
  • [29] Nonparametric Bayes estimation of contamination levels using observations from the residual distribution
    Kvam, PH
    Tiwari, RC
    Zalkikar, JN
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (452) : 1119 - 1126
  • [30] Nonparametric methods for analyzing recurrent gap time data with application to infections after hematopoietic cell transplant
    Lee, Chi Hyun
    Luo, Xianghua
    Huang, Chiung-Yu
    DeFor, Todd E.
    Brunstein, Claudio G.
    Weisdorf, Daniel J.
    BIOMETRICS, 2016, 72 (02) : 535 - 545