Estimating degradation model parameters using neighborhood pattern distributions: An optimization approach

被引:23
|
作者
Kanungo, T
Zheng, QG
机构
[1] IBM Corp, Almaden Res Ctr, San Jose, CA 95120 USA
[2] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
degradation models; parameter estimation; direct search algorithms; neighborhood pattern distributions;
D O I
10.1109/TPAMI.2004.1265867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Noise models are crucial for designing image restoration algorithms, generating synthetic training data, and predicting algorithm performance. There are two related but distinct estimation scenarios. The first is model calibration, where it is assumed that the input ideal bitmap and the output of the degradation process are both known. The second is the general estimation problem, where only the image from the output of the degradation process is given. While researchers have addressed the problem of calibration of models, issues with the general estimation problems have not been addressed in the literature. In this paper, we describe a parameter estimation algorithm for a morphological, binary, page-level image degradation model. The inputs to the estimation algorithm are 1) the degraded image and 2) information regarding the font type (italic, bold, serif, sans serif). We simulate degraded images using our model and search for the optimal parameter by looking for a parameter value for which the local neighborhood pattern distributions in the simulated image and the given degraded image are most similar. The parameter space is searched using a direct search optimization algorithm. We use the p-value of the Kolmogorov-Smirnov test as the measure of similarity between the two neighborhood pattern distributions. We show results of our algorithm on degraded document images.
引用
收藏
页码:520 / 524
页数:5
相关论文
共 50 条
  • [31] Modeling nearby FGK Population I stars: A new form of estimating stellar parameters using an optimization approach
    Fernandes, J. M.
    Vaz, A. I. F.
    Vicente, L. N.
    ASTRONOMY & ASTROPHYSICS, 2011, 532
  • [32] A novel optimization approach to estimating kinetic parameters of the enzymatic hydrolysis of corn stover
    Qi, Fenglei
    Wright, Mark Mba
    AIMS ENERGY, 2016, 4 (01) : 52 - 67
  • [33] Hybrid-Optimization Approach for Estimating Parameters of a Virus Transport Process in Aquifer
    Bhattacharjya, Rajib Kumar
    Srivastava, Ambuj
    Satish, Mysore G.
    JOURNAL OF HAZARDOUS TOXIC AND RADIOACTIVE WASTE, 2015, 19 (02)
  • [34] Optimization Parameters of tool life Model Using the Taguchi Approach and Response Surface Methodology
    Chomsamutr, Kompan
    Jongprasithporn, Somkiat
    International Journal of Computer Science Issues, 2012, 9 (1 1-3): : 120 - 125
  • [35] Estimating rainfall distributions at high temporal resolutions using a multifractal model
    Pathirana, A
    Herath, S
    Yamada, T
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2003, 7 (05) : 668 - 679
  • [36] Optimization of cropping pattern using goal programming approach
    Vivekanandan, N.
    Viswanathan, K.
    Gupta, Sanjeev
    OPSEARCH, 2009, 46 (03) : 259 - 274
  • [37] AN EMPIRICAL-APPROACH TO ESTIMATING POPULATION PARAMETERS FROM CENSORED FRACTURE-LENGTH DISTRIBUTIONS
    DECAPRARIIS, P
    MATHEMATICAL GEOLOGY, 1988, 20 (07): : 803 - 814
  • [38] Estimating unsaturated soil hydraulic parameters using ant colony optimization
    Abbaspour, KC
    Schulin, R
    van Genuchten, MT
    ADVANCES IN WATER RESOURCES, 2001, 24 (08) : 827 - 841
  • [39] An optimization approach to estimating stability regions using genetic algorithms
    Loop, BP
    Sudhoff, SD
    Zak, SH
    Zivi, EL
    ACC: PROCEEDINGS OF THE 2005 AMERICAN CONTROL CONFERENCE, VOLS 1-7, 2005, : 231 - 236
  • [40] Estimating land degradation risk for agriculture in Italy using an indirect approach
    Salvati, Luca
    Carlucci, Margherita
    ECOLOGICAL ECONOMICS, 2010, 69 (03) : 511 - 518