Lyapunov modes of two-dimensional many-body systems; Soft disks, hard disks, and rotors

被引:26
|
作者
Hoover, WG [1 ]
Posch, HA
Forster, C
Dellago, C
Zhou, M
机构
[1] Univ Calif Davis, Dept Appl Sci, Livermore, CA 94551 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Univ Vienna, Inst Expt Phys, A-1090 Vienna, Austria
[4] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[5] Univ Calif Davis, Davis, CA 95616 USA
基金
奥地利科学基金会;
关键词
local Lyapunov exponents; Lyapunov modes; hard disk fluid; soft disk fluid;
D O I
10.1023/A:1020474901341
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical instability of many-body systems can best be characterized through the local Lyapunov spectrum {lambda}, its associated eigenvectors {delta}, and the time-averaged spectrum {<lambda>} P. Each local Lyapunov exponent l describes the degree of instability associated with a well-defined direction given by the associated unit vector delta-in the full many-body phase space. For a variety of hard-particle systems it is by now well-established that several of the d vectors, all with relatively-small values of the time-averaged exponent <lambda> correspond to quite well-defined long-wavelength ' ' modes.' ' We investigate soft particles from the same viewpoint here, and find no convincing evidence for corresponding modes. The situation is similar no firm evidence for modes in a simple two-dimensional lattice-rotor model. We believe that these differences are related to the form of the time-averaged Lyapunov spectrum near <lambda> = 0.
引用
收藏
页码:765 / 776
页数:12
相关论文
共 50 条
  • [21] Lyapunov instability of classical many-body systems
    Poschl, H. A.
    Hoover, Wm G.
    THIRD 21COE SYMPOSIUM: ASTROPHYSICS AS INTERDISCIPLINARY SCIENCE, 2006, 31 : 9 - 17
  • [22] Renormalization group study of the melting of a two-dimensional system of collapsing hard disks
    V. N. Ryzhov
    E. E. Tareyeva
    Yu. D. Fomin
    E. N. Tsiok
    E. S. Chumakov
    Theoretical and Mathematical Physics, 2017, 191 : 842 - 855
  • [23] SEMICLASSICAL STATISTICAL-MECHANICS OF TWO-DIMENSIONAL FLUID MIXTURE OF HARD DISKS
    MISHRA, BM
    SINHA, SK
    JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (03) : 495 - 504
  • [24] Elastic properties of two-dimensional hard disks in the close-packing limit
    Wojciechowski, KW
    Tretiakov, KV
    Branka, AC
    Kowalik, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (02): : 939 - 946
  • [25] RENORMALIZATION GROUP STUDY OF THE MELTING OF A TWO-DIMENSIONAL SYSTEM OF COLLAPSING HARD DISKS
    Ryzhov, V. N.
    Tareyeva, E. E.
    Fomin, Yu. D.
    Tsiok, E. N.
    Chumakov, E. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 191 (03) : 842 - 855
  • [26] Many-body blockade of resonant tunneling of two-dimensional electrons
    Lok, JGS
    Geim, AK
    Maan, JC
    Eaves, L
    Nogaret, A
    Main, PC
    Henini, M
    PHYSICAL REVIEW B, 1997, 56 (03): : 1053 - 1056
  • [27] Many-body effects in frictional drag between coupled two-dimensional electron systems
    Hu, BYK
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (5-6): : 469 - 478
  • [28] A many-body problem with point interactions on two-dimensional manifolds
    Erman, Fatih
    Turgut, O. Teoman
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (05)
  • [29] Many-body properties of a spherical two-dimensional electron gas
    Tempere, J
    Silvera, IF
    Devreese, JT
    PHYSICAL REVIEW B, 2002, 65 (19): : 1954181 - 1954189
  • [30] Two-dimensional materials: Electronic structure and many-body effects
    Guinea, Francisco
    Katsnelson, Mikhail I.
    Wehling, Tim O.
    ANNALEN DER PHYSIK, 2014, 526 (9-10) : A81 - A82