Reversal of Renyi Entropy Inequalities Under Log-Concavity

被引:10
|
作者
Melbourne, James [1 ]
Tkocz, Tomasz [2 ]
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15289 USA
关键词
Renyi entropy; entropy power inequality; reversals; log-concave variables; Rogers-Shephard; convex geometry; MAXIMUM-ENTROPY; PROPERTY;
D O I
10.1109/TIT.2020.3024025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We establish a discrete analog of the Renyi entropy comparison due to Bobkov and Madiman. For log-concave variables on the integers, the min entropy is within log epsilon of the usual Shannon entropy. Additionally we investigate the entropic Rogers-Shephard inequality studied by Madiman and Kontoyannis, and establish a sharp Renyi version for certain parameters in both the continuous and discrete cases.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 50 条