Imputation-based semiparametric estimation for INAR(1) processes with missing data

被引:0
|
作者
Xiong, Wei [1 ]
Wang, Dehui [1 ]
Wang, Xinyang [2 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Shenyang Normal Univ, Sch Math & Systemat Sci, Shenyang 110034, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Integer-valued autoregressive; semiparametric likelihood; first-step imputation; missing not at random; INFERENCE; MODELS;
D O I
10.15672/hujms.643081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In applied problems parameter estimation with missing data has risen as a hot topic. Imputation for ignorable incomplete data is one of the most popular methods in integer-valued time series. For data missing not at random (MNAR), estimators directly derived by imputation will lead results that is sensitive to the failure of the effectiveness. In view of the first-order integer-valued autoregressive (INAR(1)) processes with MNAR response mechanism, we consider an imputation based semiparametric method, which recommends the complete auxiliary variable of Yule-Walker equation. Asymptotic properties of relevant estimators are also derived. Some simulation studies are conducted to verify the effectiveness of our estimators, and a real example is also presented as an illustration.
引用
下载
收藏
页码:1843 / 1864
页数:22
相关论文
共 50 条
  • [31] Weighted semiparametric estimation in regression analysis with missing covariate data
    Wang, CY
    Wang, SJ
    Zhao, LP
    Ou, ST
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 512 - 525
  • [32] SEMIPARAMETRIC ESTIMATION WITH DATA MISSING NOT AT RANDOM USING AN INSTRUMENTAL VARIABLE
    Sun, BaoLuo
    Liu, Lan
    Miao, Wang
    Wirth, Kathleen
    Robins, James
    Tchetgen, Eric J. Tchetgen
    STATISTICA SINICA, 2018, 28 (04) : 1965 - 1983
  • [33] Imputation and low-rank estimation with Missing Not At Random data
    Aude Sportisse
    Claire Boyer
    Julie Josse
    Statistics and Computing, 2020, 30 : 1629 - 1643
  • [34] Imputation and low-rank estimation with Missing Not At Random data
    Sportisse, Aude
    Boyer, Claire
    Josse, Julie
    STATISTICS AND COMPUTING, 2020, 30 (06) : 1629 - 1643
  • [35] MISSING DATA IN TRAFFIC ESTIMATION: A VARIATIONAL AUTOENCODER IMPUTATION METHOD
    Boquet, Guillem
    Lopez Vicario, Jose
    Morell, Antoni
    Serrano, Javier
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2882 - 2886
  • [36] Imputation of missing photometric data and photometric redshift estimation for CSST
    Luo, Zhijian
    Tang, Zhirui
    Chen, Zhu
    Fu, Liping
    Du, Wei
    Zhang, Shaohua
    Gong, Yan
    Shu, Chenggang
    Lu, Junhao
    Li, Yicheng
    Meng, Xian-Min
    Zhou, Xingchen
    Fan, Zuhui
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (03) : 3539 - 3550
  • [37] MIAEC: Missing Data Imputation Based on the Evidence Chain
    Xu, Xiaolong
    Chong, Weizhi
    Li, Shancang
    Arabo, Abdullahi
    Xiao, Jianyu
    IEEE ACCESS, 2018, 6 : 12983 - 12992
  • [38] Fuzzy C-mean Missing Data Imputation for Analogy-based Effort Estimation
    AlMutlaq, Ayman Jalal
    Jawawi, Dayang N. A.
    Arbain, Adila Firdaus Binti
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (08) : 628 - 640
  • [39] Tree-based Approach to Missing Data Imputation
    Vateekul, Peerapon
    Sarinnapakorn, Kanoksri
    2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 70 - +
  • [40] Analysis of Machine Learning Based Imputation of Missing Data
    Rizvi, Syed Tahir Hussain
    Latif, Muhammad Yasir
    Amin, Muhammad Saad
    Telmoudi, Achraf Jabeur
    Shah, Nasir Ali
    CYBERNETICS AND SYSTEMS, 2023,