Soliton Solutions for a Singular Schrodinger Equation with Any Growth Exponents

被引:2
|
作者
Liu, Jiayin [1 ,2 ]
Liu, Duchao [2 ]
Zhao, Peihao [2 ]
机构
[1] Beifang Univ Nationalities, Sch Math & Informat Sci, Yinchuan 750021, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
Quasilinear Schrodinger equation; Singular equation; Critical or supercritical exponent; Variational methods; Moser iteration technique; LINEAR ELLIPTIC-EQUATIONS; HOLDER LOCAL MINIMIZERS; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; PERTURBATION METHOD; MULTIPLE SOLUTIONS; EXISTENCE; PLASMA; NONLINEARITIES; SOBOLEV;
D O I
10.1007/s10440-016-0084-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a kind of quasilinear Schrodinger equation with combined nonlinearities, a convex term with any growth and a singular term, in a bounded smooth domain. Multiplicity results are obtained by critical point theory together with truncation arguments and the method of upper and lower solutions.
引用
收藏
页码:179 / 199
页数:21
相关论文
共 50 条