Modulating dopant segregation in floating-zone silicon growth in magnetic fields using rotation

被引:12
|
作者
Lan, CW
Liang, MC
机构
[1] Chemical Engineering Department, National Central University
关键词
rotation; silicon; floating zone; segregation; magnetic field; simulation;
D O I
10.1016/S0022-0248(97)00264-9
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The feasibility of modulating dopant segregation using rotation for floating-zone silicon growth in axisymmetric magnetic fields is investigated through computer simulation. In the model, heat and mass transfer, fluid flow, magnetic fields, melt/solid interfaces, and the free surface are solved globally by a robust finite-volume/Newton's method. Different rotation modes, single-and counter-rotations, are applied to the growth under both axial and cusp magnetic fields. Under the magnetic fields, it is observed that dopant mixing is poor in the quiescent core region of the molten zone, and the weak convection there is responsible for the segregation. Under an axial magnetic field, moderate counter-rotation or crystal rotation improves dopant uniformity. However, excess counter-rotation or feed rotation alone results in more complicated flow structures, and thus induces larger radial segregation. For the cusp fields, rotation can enhance more easily the dopant mixing in the core melt and thus improve dopant uniformity.
引用
收藏
页码:381 / 387
页数:7
相关论文
共 50 条
  • [21] SEGREGATION IN SI FLOATING-ZONE CRYSTALS GROWN UNDER MICROGRAVITY AND IN A MAGNETIC-FIELD
    CROLL, A
    DOLD, P
    BENZ, KW
    JOURNAL OF CRYSTAL GROWTH, 1994, 137 (1-2) : 95 - 101
  • [22] Earth optimization of space experiment on growth of germanium by floating-zone technique with the use of rotating magnetic fields
    A. V. Kartavykh
    É. S. Kopeliovich
    M. G. Mil’vidskii
    V. V. Rakov
    Crystallography Reports, 2001, 46 : 148 - 153
  • [23] Earth optimization of space experiment on growth of germanium by floating-zone technique with the use of rotating magnetic fields
    Kartavykh, AV
    Kopeliovich, ÉS
    Mil'vidskii, MG
    Rakov, VV
    CRYSTALLOGRAPHY REPORTS, 2001, 46 (01) : 148 - 153
  • [24] Comparison of the effect of μg and magnetic fields on the crystal growth of floating zone silicon
    Benz, KW
    Dold, P
    Cröll, A
    Schweizer, M
    Kaiser, T
    Lichtensteiger, M
    Szofran, FR
    MATERIALS RESEARCH IN LOW GRAVITY II, 1999, 3792 : 2 - 12
  • [25] Thermocapillary convection during floating-zone silicon growth with a uniform or non-uniform magnetic field
    Morthland, TE
    Walker, JS
    JOURNAL OF CRYSTAL GROWTH, 1996, 158 (04) : 471 - 479
  • [26] Influence of reduced working frequencies on the floating-zone growth of silicon single crystals
    Menzel, R.
    Rost, A.
    Luedge, A.
    Riemann, H.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2011, 46 (10) : 1003 - 1009
  • [27] GaSb: Surface tension and floating-zone growth
    Tegetmeier, A
    Croll, A
    Danilewsky, A
    Benz, KW
    JOURNAL OF CRYSTAL GROWTH, 1996, 166 (1-4) : 651 - 656
  • [28] FLOATING-ZONE CRYSTAL-GROWTH OF WC
    TANAKA, T
    OTANI, S
    ISHIZAWA, Y
    JOURNAL OF MATERIALS SCIENCE, 1988, 23 (02) : 665 - 669
  • [29] Magnetic field controlled floating-zone single crystal growth of intermetallic compounds
    Hermann, R.
    Gerbeth, G.
    Priede, J.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 220 (01): : 227 - 241
  • [30] Floating-zone and floating-solution-zone growth of GaSb under microgravity
    Croll, A
    Kaiser, T
    Schweizer, M
    Danilewsky, AN
    Lauer, S
    Tegetmeier, A
    Benz, KW
    JOURNAL OF CRYSTAL GROWTH, 1998, 191 (03) : 365 - 376