Fast Decoding of Multipoint Codes from Algebraic Curves

被引:2
|
作者
Sakata, Shojiro [1 ]
Fujisawa, Masaya [2 ]
机构
[1] Univ Electrocommun, Tokyo 1920363, Japan
[2] Tokyo Univ Sci, Tokyo 1628601, Japan
关键词
Algebraic geometry codes; algebraic curve; multipoint code; one-point code; fast decoding; vectorial BMS algorithm; MINIMUM DISTANCE; GEOMETRIC CODES; 2-POINT CODES; GOPPA CODES; POINT; SET;
D O I
10.1109/TIT.2014.2300473
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multipoint codes are a broad class of algebraic geometry codes derived from algebraic functions, which have multiple poles and/or zeros on an algebraic curve. Thus, they are more general than one-point codes, which are an important class of algebraic geometry codes in the sense that they can be decoded efficiently using the Berlekamp-Massey-Sakata algorithm. We present a fast method for decoding multipoint codes from a plane curve, particularly a Hermitian curve. Our method with some adaptation can be applied to decode multipoint codes from a general algebraic curve embedded in the N-dimensional affine space F-q(N) over a finite field F-q, so that those algebraic geometry codes can be decoded efficiently if the dimension N of the affine space, including the defining curve is small.
引用
收藏
页码:2054 / 2064
页数:11
相关论文
共 50 条
  • [21] Fast interpolation method for list decoding of RS and algebraic-geometric codes
    Sakata, S
    Numakami, Y
    Fujisawa, H
    2000 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2000, : 479 - 479
  • [22] Fast decoding of algebraic-geometric codes up to the designed minimum distance
    Sakata, S
    Justesen, J
    Madelung, Y
    Jensen, HE
    Hoholdt, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) : 1672 - 1677
  • [23] Authentication codes and algebraic curves
    Xing, CP
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 239 - 244
  • [24] CODES ON ALGEBRAIC-CURVES
    GOPPA, VD
    DOKLADY AKADEMII NAUK SSSR, 1981, 259 (06): : 1289 - 1290
  • [25] Generalized Algebraic Geometric Codes From Maximal Curves
    Calderini, Marco
    Faina, Giorgio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (04) : 2386 - 2396
  • [26] New binary linear codes from algebraic curves
    Leung, KH
    Ling, S
    Xing, CP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) : 285 - 287
  • [27] A New Construction of Block Codes From Algebraic Curves
    Jin, Lingfei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (08) : 4239 - 4242
  • [28] Asymptotically Good Nonlinear Codes From Algebraic Curves
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 5991 - 5995
  • [29] ON THE DECODING OF ALGEBRAIC-GEOMETRIC CODES
    SKOROBOGATOV, AN
    VLADUT, SG
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) : 1051 - 1060
  • [30] Algebraic decoding of folded Gabidulin codes
    Hannes Bartz
    Vladimir Sidorenko
    Designs, Codes and Cryptography, 2017, 82 : 449 - 467