An Improved Particle Filtering Algorithm Using Different Correlation Coefficients for Nonlinear System State Estimation

被引:6
|
作者
Meng, Qingxu [1 ]
Li, Kaicheng [1 ]
Zhao, Chen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Luoyu Rd 1037, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Kendall rank correlation coefficient; particle filtering; parameter estimation; Pearson correlation coefficient; order statistics correlation coefficient; Spearman's rank correlation coefficient; STATISTICS;
D O I
10.1089/big.2018.0130
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Particle filtering (PF) algorithm has found an increasingly wide utilization in many fields at present, especially in nonlinear and non-Gaussian situations. Because of the particle degeneracy limitation, various resampling methods have been researched. This article proposed an improved PF algorithm combining with different rank correlation coefficients to overcome the shortcomings of degeneracy. By simulating iteration operation in Matlab, it discovers that the proposed algorithm provides better accuracy than sequential importance resampling, Gaussian sum particle filter, and Gaussian mixture sigma-point particle filters in Gaussian mixture noise.
引用
收藏
页码:114 / 120
页数:7
相关论文
共 50 条
  • [1] Particle estimation algorithm using correlation of observation for nonlinear system state
    Liang, J.
    Peng, X. -Y.
    Ma, Y. -T.
    ELECTRONICS LETTERS, 2008, 44 (08) : 553 - 555
  • [2] Particle estimation algorithm using Sh correlation coefficient for nonlinear system state
    Liang, Jun
    Peng, Xi-Yuan
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2010, 38 (2A): : 165 - 168
  • [3] Box particle filtering for nonlinear state estimation using interval analysis
    Abdallah, Fahed
    Gning, Amadou
    Bonnifait, Philippe
    AUTOMATICA, 2008, 44 (03) : 807 - 815
  • [4] Nonlinear state estimation on unit spheres using manifold particle filtering
    Bordin, Claudio J., Jr.
    de Figueredo, Caio G.
    Bruno, Marcelo G. S.
    DIGITAL SIGNAL PROCESSING, 2018, 81 : 50 - 56
  • [5] Improved Particle Filter Algorithm Based on the Parallelotope for Nonlinear System State Estimation and its Application on SOC Estimation
    Wang, Ziyun
    Ji, Gang
    Wang, Yan
    Park, Ju H.
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025,
  • [6] NONLINEAR SYSTEM STATE ESTIMATION WITH HEURISTIC ALGORITHM GUIDED PARTICLE
    Ignatious, J. Joseph
    Lincon, S. Abraham
    Manic, K. Suresh
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2015, 10 : 91 - 101
  • [7] Particle Estimation Algorithm Using Angle between Observation Vectors for Nonlinear System State
    Liang Jun
    Peng Yu
    Peng Xiyuan
    CHINESE JOURNAL OF ELECTRONICS, 2009, 18 (04): : 700 - 702
  • [8] STATE ESTIMATION OF A NONLINEAR SYSTEM USING PARTICLE FILTER
    Anandhakumar, K.
    Ali, I. Syed Meer Kulam
    Selvakumar, K.
    Raja, K.
    2014 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC), 2014, : 805 - 808
  • [9] A Generalized Algorithm for Nonlinear State Estimation Using Extended UFIR Filtering
    Granados-Cruz, Moises
    Shmaliy, Yuriy S.
    Zhao, Shunyi
    2014 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2014,
  • [10] MultiPDF particle filtering in state estimation of nonlinear objects
    Michalski, Jacek
    Kozierski, Piotr
    Giernacki, Wojciech
    Zietkiewicz, Joanna
    Retinger, Marek
    NONLINEAR DYNAMICS, 2021, 106 (03) : 2165 - 2182