Experimental and Numerical Investigation of Inlet Temperature Effect on Convective Heat Transfer of γ-Al2O3/Water Nanofluid Flows in Microtubes

被引:14
|
作者
Karimzadehkhouei, Mehrdad [1 ]
Sadaghiani, Abdolali Khalili [1 ]
Motezakker, Ahmad Reza [1 ]
Akgonul, Sarp [1 ]
Ozbey, Arzu [1 ]
Sendur, Kuersat [1 ]
Menguc, M. Pinar [2 ]
Kosar, Ali [1 ,3 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Mechatron Engn Program, TR-34956 Istanbul, Turkey
[2] Ozyegin Univ, Dept Mech Engn, Istanbul, Turkey
[3] Sabanci Univ, Ctr Excellence Funct Surfaces & Interfaces Nanodi, Istanbul, Turkey
关键词
TRANSFER ENHANCEMENT; THERMAL-CONDUCTIVITY; CIRCULAR TUBE; LAMINAR-FLOW; AL2O3/WATER NANOFLUID; FORCED-CONVECTION; OXIDE NANOFLUIDS; BROWNIAN-MOTION; TURBULENT-FLOW; PRESSURE-DROP;
D O I
10.1080/01457632.2018.1442305
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanofluids are the combination of a base fluid with nanoparticles with sizes of 1-100 nm. In order to increase the heat transfer performance, nanoparticles with higher thermal conductivity compared to that of base fluid are introduced into the base fluid. Main parameters affecting single-phase and two-phase heat transfer of nanofluids are shape, material type and average diameter of nanoparticles, mass fraction and stability of nanoparticles, surface roughness, and fluid inlet temperature. In this study, the effect of inlet temperature of deionized water/alumina (Al2O3) nanoparticle nanofluids was both experimentally and numerically investigated. Nanofluids with a mass fraction of 0.1% were tested inside a microtube having inner and outer diameters of 889 and 1,067 mu m, respectively, for hydrodynamically developed and thermally developing laminar flows at Reynolds numbers of 650, 1,000, and 1,300. According to the obtained numerical and experimental results, the inlet temperature effect was more pronounced for the thermally developing region. The performance enhancement with nanoparticles was obtained at rather higher Reynolds numbers and near the inlet of the microtube. There was a good agreement between the experimental and numerical results so that the numerical approach could be further implemented in future studies on nanofluid flows.
引用
收藏
页码:738 / 752
页数:15
相关论文
共 50 条
  • [21] Experimental investigation of heat transfer of Al2O3 nanofluid in a microchannel heat sink
    Jung, Sung Yong
    Park, Hanwook
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 179
  • [22] Numerical investigation of heat transfer of laminar and turbulent pulsating Al2O3/water nanofluid flow
    Hoseinzadeh, S.
    Heyns, P. S.
    Kariman, H.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (03) : 1149 - 1166
  • [23] An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid
    Ho, C. J.
    Wei, L. C.
    Li, Z. W.
    APPLIED THERMAL ENGINEERING, 2010, 30 (2-3) : 96 - 103
  • [24] Laminar convective heat transfer characteristic of Al2O3/water nanofluid in a circular microchannel
    Trinavee, K.
    Gogoi, T. K.
    Pandey, M.
    XXVII IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (CCP2015), 2016, 759
  • [25] Numerical Investigation of Forced Convective Heat Transfer and Performance Evaluation Criterion of Al2O3/Water Nanofluid Flow inside an Axisymmetric Microchannel
    Shahrestani, Misagh Irandoost
    Maleki, Akbar
    Shadloo, Mostafa Safdari
    Tlili, Iskander
    SYMMETRY-BASEL, 2020, 12 (01):
  • [26] Experimental analysis of turbulent convective heat transfer and pressure drop of Al2O3/water nanofluid in horizontal tube
    Kayhani, M. H.
    Nazari, M.
    Soltanzadeh, H.
    Heyhat, M. M.
    Kowsary, F.
    MICRO & NANO LETTERS, 2012, 7 (03): : 223 - 227
  • [27] Computational Analysis of Convective Heat Transfer in Ternary Nanofluid (Al2O3
    Devi, Rekha
    JOURNAL OF NANOFLUIDS, 2024, 13 (05) : 1063 - 1071
  • [28] Heat Transfer Characteristics of Plate Heat Exchanger with Bubble Fin Using Al2O3/Water Nanofluid: Numerical Investigation
    Kumar, Sandeep
    Singh, Sudhir Kumar
    Sharma, Deepak
    HEAT TRANSFER ENGINEERING, 2022, 44 (19) : 1703 - 1718
  • [29] Experimental Investigation of an Al2O3/Distilled Water Nanofluid Used In the Heat Pipes of Heat Exchangers
    Ozturk, Ahmet
    Ozalp, Mehmet
    Sozen, Adnan
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2018, 31 (02): : 616 - 626
  • [30] Numerical investigation of temperature increment effect on bubble dynamics in stagnant water and Al2O3 nanofluid column
    Gharedaghi, Hamed
    Dousti, Ahmad
    Hanafizadeh, Pedram
    Ashjaee, Mehdi
    PARTICULATE SCIENCE AND TECHNOLOGY, 2019, 37 (03) : 292 - 302