Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis

被引:49
|
作者
Chuvil'deev, V. N. [1 ]
Blagoveshchenskiy, Yu. V. [2 ]
Nokhrin, A. V. [1 ]
Boldin, M. S. [1 ]
Sakharov, N. V. [1 ]
Isaeva, N. V. [2 ]
Shotin, S. V. [1 ]
Belkin, O. A. [1 ]
Popov, A. A. [1 ]
Smirnova, E. S. [1 ]
Lantsev, E. A. [1 ]
机构
[1] Lobachevsky State Univ Nizhniy Novgorod, Lobachevsky Univ, UNN, Gagarina Ave,23, Nizhnii Novgorod 603950, Russia
[2] RAS, AA Baykov Inst Met & Mat Sci, Leninskii Ave,49, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
Tungsten carbide; Nanopowders; Spark plasma sintering; DC arc thermal plasma synthesis; Grain growth; MECHANICAL-PROPERTIES; WC; CONSOLIDATION; TECHNOLOGY; NANOCRYSTALLINE; MICROSTRUCTURE; DIFFUSION; METALS; OXYGEN; FIELD;
D O I
10.1016/j.jallcom.2017.03.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The paper dwells on the research conducted into high-rate consolidation of pure tungsten carbide (WC) nanopowders using the Spark Plasma Sintering technology. Studies included the effect that the original size of WC nanoparticles and their preparation modes have on density, structure parameters, and mechanical properties of tungsten carbide. Samples of high-density nanostructured tungsten carbide characterized by high hardness (up to 31-34 GPa) and improved fracture toughness (4.3-5.2 MPa m(1/2)) were obtained. It has been found that materials that show abnormal grain growth during sintering have lower values of sintering activation energy as compared to materials the structure of which is more stable during high-rate heating. A qualitative model is proposed that explains this effect through the dependence of the grain boundary diffusion coefficient on the grain boundary migration rate. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:547 / 561
页数:15
相关论文
共 50 条
  • [41] Spark plasma sintering of pure iron nanopowders by simple route
    Fabregue, D.
    Piallat, J.
    Maire, E.
    Jorand, Y.
    Massardier-Jourdan, V.
    Bonnefont, G.
    POWDER METALLURGY, 2012, 55 (01) : 76 - 79
  • [42] Some SiAlONs Prepared from Nanopowders by Spark Plasma Sintering
    Zalite, Ilmars
    Zilinska, Natalja
    Steins, Ints
    Krastins, Janis
    NANOCOMPOSITE MATERIALS, 2009, 151 : 240 - 244
  • [43] Spark plasma sintering of pure and doped tungsten as plasma facing material
    Autissier, E.
    Richou, M.
    Minier, L.
    Naimi, F.
    Pintsuk, G.
    Bernard, F.
    PHYSICA SCRIPTA, 2014, T159
  • [44] Sintering characteristics and grain growth behavior of MgO nanopowders by spark plasma sintering
    Zhang, Yongfen
    Song, Aijun
    Ma, Deqiang
    Zhang, Xinyu
    Ma, Mingzhen
    Liu, Riping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 608 : 304 - 310
  • [46] Spark plasma sintering processed α-SiAlON bonded tungsten carbide: Densification, microstructure and tribomechanical properties
    Sarkar, Soumya
    Biswas, Mita
    Halder, Rupa
    Bandyopadhyay, Siddhartha
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 248
  • [47] Suppressing η-phase development in steel-cemented tungsten carbide: A spark plasma sintering study
    Cahill, James T.
    Kelly, James P.
    Novitskaya, Ekaterina
    McKee, Michael
    Bahena, Joel A.
    Graeve, Olivia A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2019, 102 (02) : 595 - 601
  • [48] Effect of Tungsten Carbide on Densification and Mechanical Properties of Silicon Nitride Ceramics by Spark Plasma Sintering
    Liu Jian
    Li Zhijian
    Luo Xudong
    Xie Zhipeng
    RARE METAL MATERIALS AND ENGINEERING, 2018, 47 : 241 - 244
  • [49] Joining of silicon carbide and graphite by spark plasma sintering
    Okuni, Tomoyuki
    Miyamoto, Yoshinari
    Abe, Hiroya
    Naito, Makio
    CERAMICS INTERNATIONAL, 2014, 40 (01) : 1359 - 1363
  • [50] Silicon Carbide Diffusion Bonding by Spark Plasma Sintering
    Aroshas, Ron
    Rosenthal, Idan
    Stern, Adin
    Shmul, Zvia
    Kalabukhov, Sergei
    Frage, Nachum
    MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (01) : 122 - 126