Estimating Object Shape and Movement Using Local Occupancy Grid Maps

被引:1
|
作者
Quehl, Jannik [1 ]
Yan, Shengchao [1 ]
Wirges, Sascha [2 ]
Pauls, Jan-Hendrik [1 ]
Lauer, Martin [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Measurement & Control Syst, Karlsruhe, Germany
[2] FZI Res Ctr Informat Technol, Mobile Percept Syst Grp, Karlsruhe, Germany
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 08期
关键词
LiDAR; Motion Estimation; Scan Matching; Shape estimation; SLAM;
D O I
10.1016/j.ifacol.2019.08.053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating motion and shape of surrounding objects reliably and accurately is a fundamental challenge in the study of interactions between cooperative traffic participants. This paper proposes a new approach that utilizes free space information obtained from a LiDAR sensor and object local grid maps in order to simultaneously estimate the shape and movement state of objects with arbitrary shape. We evaluated our approach in several simulated scenarios and found that the movement and shape estimation results are very close to the ground truth. Finally, we did a qualitative evaluation on real data extracted from the KITTI benchmark. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:87 / 92
页数:6
相关论文
共 50 条
  • [1] Multiple extended objects tracking with object-local occupancy grid maps
    Schuetz, Markus
    Appenrodt, Nils
    Dickmann, Juergen
    Dietmayer, Klaus
    [J]. 2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [2] Improved Object Tracking from Detailed Shape Estimation Using Object Local Grid Maps with Stereo
    Aue, Jan
    Schmid, Matthias R.
    Graf, Thorsten
    Effertz, Jan
    [J]. 2013 16TH INTERNATIONAL IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS - (ITSC), 2013, : 330 - 335
  • [3] Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs
    Engel, Nico
    Hoermann, Stefan
    Henzler, Philipp
    Dietmayer, Klaus
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3852 - 3858
  • [4] Mobile robot localization using local occupancy grid maps transformations
    Banjanovic-Mehmedovic, Lejla
    Petrovic, Ivan
    Ivanjko, Edouard
    [J]. 2006 12TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE, VOLS 1-4, 2006, : 1932 - +
  • [5] Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks
    Wirges, Sascha
    Fischer, Tom
    Stiller, Christoph
    Balado Frias, Jesus
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3530 - 3535
  • [6] Object Detection on Dynamic Occupancy Grid Maps Using Deep Learning and Automatic Label Generation
    Hoermann, Stefan
    Hensler, Philipp
    Bach, Martin
    Dietmayer, Klaus
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 826 - 833
  • [7] Fast Dynamic Object Extraction using Stereovision based on Occupancy Grid Maps and Optical Flow
    Suganuma, Naoki
    Kubo, Takaaki
    [J]. 2011 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2011, : 978 - 983
  • [8] Localizability estimation using correlation on occupancy grid maps
    Maiku Kondo
    Masahiko Hoshi
    Yoshitaka Hara
    Sousuke Nakamura
    [J]. ROBOMECH Journal, 10
  • [9] Localizability estimation using correlation on occupancy grid maps
    Kondo, Maiku
    Hoshi, Masahiko
    Hara, Yoshitaka
    Nakamura, Sousuke
    [J]. ROBOMECH JOURNAL, 2023, 10 (01):
  • [10] Object Tracking from Medium Level Stereo Camera Data Providing Detailed Shape Estimation Using Local Grid Maps
    Aue, Jan
    Schmid, Matthias R.
    Graf, Thorsten
    Effertz, Jan
    Muehlfellner, Peter
    [J]. 2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2013, : 1324 - 1329