Fast Dynamic Object Extraction using Stereovision based on Occupancy Grid Maps and Optical Flow

被引:0
|
作者
Suganuma, Naoki [1 ]
Kubo, Takaaki [2 ]
机构
[1] Kanazawa Univ, Inst Sci & Technol, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[2] Kanazawa Univ, Grad Sch, Kanazawa, Ishikawa, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The driving support system is most important research areas in intelligent transport system (ITS). Moreover, obstacle detection is one of the key technologies, and we have proposed such system based on stereovision system. Additionally, to assist driving safely, it is necessary to extract dynamic objects and alert driver faster. In our previous report, we proposed dynamic objects extraction method based on Occupancy Grid Maps. However we found that it takes a long time to detect it. So, in this paper, we propose a method to analyze motion of dynamic objects used 6D information comprised of 3D position and motion of objects, and extract the dynamic objects faster.
引用
收藏
页码:978 / 983
页数:6
相关论文
共 50 条
  • [1] Obstacle Detection Based on Occupancy Grid Maps Using Stereovision System
    Kohara, Kenji
    Suganuma, Naoki
    Negishi, Tatsuyuki
    Nanri, Takuya
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2010, 8 (02) : 85 - 95
  • [2] Deep Object Tracking on Dynamic Occupancy Grid Maps Using RNNs
    Engel, Nico
    Hoermann, Stefan
    Henzler, Philipp
    Dietmayer, Klaus
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3852 - 3858
  • [3] Object Detection on Dynamic Occupancy Grid Maps Using Deep Learning and Automatic Label Generation
    Hoermann, Stefan
    Hensler, Philipp
    Bach, Martin
    Dietmayer, Klaus
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 826 - 833
  • [4] Offline Object Extraction from Dynamic Occupancy Grid Map Sequences
    Stumper, Daniel
    Gies, Fabian
    Hoermann, Stefan
    Dietmayer, Klaus
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 389 - 396
  • [5] Estimating Object Shape and Movement Using Local Occupancy Grid Maps
    Quehl, Jannik
    Yan, Shengchao
    Wirges, Sascha
    Pauls, Jan-Hendrik
    Lauer, Martin
    [J]. IFAC PAPERSONLINE, 2019, 52 (08): : 87 - 92
  • [6] Object Detection and Classification in Occupancy Grid Maps using Deep Convolutional Networks
    Wirges, Sascha
    Fischer, Tom
    Stiller, Christoph
    Balado Frias, Jesus
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3530 - 3535
  • [7] Environment Perception Framework Fusing Multi-Object Tracking, Dynamic Occupancy Grid Maps and Digital Maps
    Gies, Fabian
    Danzer, Andreas
    Dietmayer, Klaus
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 3859 - 3865
  • [8] Fast Moving UAV Collision Avoidance Using Optical Flow and Stereovision
    Peszor, Damian
    Wojciechowska, Marzena
    Wojciechowski, Konrad
    Szender, Marcin
    [J]. INTELLIGENT INFORMATION AND DATABASE SYSTEMS (ACIIDS 2017), PT II, 2017, 10192 : 572 - 581
  • [9] Radar-based Dynamic Occupancy Grid Mapping and Object Detection
    Diehl, Christopher
    Feicho, Eduard
    Schwambach, Alexander
    Dammeier, Thomas
    Mares, Eric
    Bertram, Torsten
    [J]. 2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [10] Hidden Markov Model-based Occupancy Grid Maps of Dynamic Environments
    Rapp, Matthias
    Dietmayer, Klaus
    Hahn, Markus
    Duraisamy, Bharanidhar
    Dickmann, Juergen
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1780 - 1788