GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance

被引:61
|
作者
Sugumaran, Pon Janani [1 ]
Liu, Xiao-Li [2 ]
Herng, Tun Seng [1 ]
Peng, Erwin [1 ]
Ding, Jun [1 ]
机构
[1] Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117574, Singapore
[2] Northwest Univ, Coll Life Sci, Xian 710069, Shaanxi, Peoples R China
关键词
iron oxide nanoparticles; hyperthermia; graphene oxide; stability; intrinsic loss power; SIZE-CONTROLLED SYNTHESIS; SURFACE MODIFICATION; HEAT-TRANSFER; NANOCOMPOSITES; LIMITATIONS; DELIVERY;
D O I
10.1021/acsami.9b04261
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Because of their high magnetization and suitable biocompatibility, iron-oxide nanoparticles (IONPs) have been widely employed in various biomedical applications, including magnetic hyperthermia for cancer treatment. In many cases, the colloidal stability requirement will limit the usage of ferromagnetic particles that are usually associated with good magnetic response. To address this challenge, a stable carrier for better colloidal stability regardless of the size or shape of the IONPs while at the same time providing enhanced magnetic hyperthermia heating performance is required. In this work, IONPs of different sizes (4, 8, 20, 45, and 250 nm) were engineered to reside in the graphene oxide (GO) sheet carrier, which were stable in aqueous solution even in the presence of a strong magnetic field. Out of various IONPs sizes, highest specific absorption rate (SAR) value of 5020 W g(-1) was obtained with 45 nm GO-IONPs nanocomposites at a frequency and alternating magnetic field of 400 kHz and 32.5 kA m(-1), respectively. The calculated intrinsic loss power (ILP) was 12.21 nH m(2) kg(-1), which is one of the highest ILP values reported for synthesized IONPs to the best of our knowledge. To enhance the excellent colloidal stability in biological environment, the GO-IONPs nanocomposites can be further grafted with polyethylene glycol (PEG) because agglomeration of pristine GO sheets occurs because of adsorption of cations. High ILP values could be well maintained even after PEG coating. The PEGylated 45 nm GO-IONP showed excellent antitumor efficacy in 4T1-tumor model mice by inhibiting tumor progression within a safe dosage range. Overall, the novel nanocomposite in this work-PEG-GO-IONP-possesses high hyperthermia performance, excellent colloidal stability in biological environment, and availability of functional groups in GO and can be utilized for tagging in various biomedical applications.
引用
收藏
页码:22703 / 22713
页数:11
相关论文
共 50 条
  • [31] Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids
    Kandasamy, Ganeshlenin
    Sudame, Atul
    Bhati, Piyush
    Chakrabarty, Anindita
    Kale, S. N.
    Maity, Dipak
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 514 : 534 - 543
  • [32] High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI)
    Bauer, Lisa M.
    Situ, Shu F.
    Griswold, Mark A.
    Samia, Anna Cristina S.
    NANOSCALE, 2016, 8 (24) : 12162 - 12169
  • [33] Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia
    Tabacchi, Gloria
    Armenia, Ilaria
    Bernardini, Giovanni
    Masciocchi, Norberto
    Guagliardi, Antonietta
    Fois, Ettore
    ACS APPLIED NANO MATERIALS, 2023, 6 (14) : 12914 - 12921
  • [34] Ferrimagnetic Large Single Domain Iron Oxide Nanoparticles for Hyperthermia Applications
    Zahn, Diana
    Landers, Joachim
    Buchwald, Juliana
    Diegel, Marco
    Salamon, Soma
    Mueller, Robert
    Koehler, Moritz
    Ecke, Gernot
    Wende, Heiko
    Dutz, Silvio
    NANOMATERIALS, 2022, 12 (03)
  • [35] Structured superparamagnetic nanoparticles for high performance mediator of magnetic fluid hyperthermia: Synthesis, colloidal stability and biocompatibility evaluation
    Thorat, N. D.
    Otari, S. V.
    Bohara, R. A.
    Yadav, H. M.
    Khot, V. M.
    Salunkhe, A. B. .
    Phadatare, M. R.
    Prasad, A. I.
    Ningthoujam, R. S.
    Pawar, S. H.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 42 : 637 - 646
  • [36] Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications
    Kowalik, Przemyslaw
    Mikulski, Jakub
    Borodziuk, Anna
    Duda, Magdalena
    Kaminska, Izabela
    Zajdel, Karolina
    Rybusinski, Jaroslaw
    Szczytko, Jacek
    Wojciechowski, Tomasz
    Sobczak, Kamil
    Minikayev, Roman
    Kulpa-Greszta, Magdalena
    Pazik, Robert
    Grzaczkowska, Paulina
    Fronc, Krzysztof
    Lapinski, Mariusz
    Frontczak-Baniewicz, Malgorzata
    Sikora, Bozena
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12): : 6871 - 6883
  • [37] The influence of magnetic and physiological behaviour on the effectiveness of iron oxide nanoparticles for hyperthermia
    Dennis, C. L.
    Jackson, A. J.
    Borchers, J. A.
    Ivkov, R.
    Foreman, A. R.
    Hoopes, P. J.
    Strawbridge, R.
    Pierce, Z.
    Goerntiz, E.
    Lau, J. W.
    Gruettner, C.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
  • [38] Iron Oxide Based Nanoparticles for Magnetic Hyperthermia Strategies in Biological Applications
    Pineiro, Yolanda
    Vargas, Zulema
    Rivas, Jose
    Arturo Lopez-Quintela, Manuel
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2015, (27) : 4495 - 4509
  • [39] Design of iron oxide-based nanoparticles for MRI and magnetic hyperthermia
    Blanco-Andujar, Cristina
    Walter, Aurelie
    Cotin, Geoffrey
    Bordeianu, Catalina
    Mertz, Damien
    Felder-Flesch, Delphine
    Begin-Colin, Sylvie
    NANOMEDICINE, 2016, 11 (14) : 1889 - 1910
  • [40] Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles
    Arias, Sandra L.
    Shetty, Akshath R.
    Senpan, Angana
    Echeverry-Rendon, Monica
    Reece, Lisa M.
    Allain, Jean Paul
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2016, (111):