Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis

被引:2
|
作者
Latifova, A. R. [1 ,2 ,3 ]
Khanmamedov, A. Kh. [1 ,2 ,3 ]
机构
[1] Azerbaijan Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
[2] Baku State Univ, Baku, Azerbaijan
[3] Azerbaijan Univ, Baku, Azerbaijan
关键词
SCHRODINGER-EQUATION; HARMONIC-OSCILLATOR;
D O I
10.1007/s11253-020-01801-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Stark operator T = -d(2)/dx(2) + x + q on the semiaxis 0 <= x < infinity with Dirichlet boundary condition at the origin. By the method of transformation operators, we study the direct and inverse spectral problems, deduce the main integral equation for the inverse problem, and prove that this equation is uniquely solvable. We also propose an effective algorithm of reconstruction of the perturbation potential.
引用
收藏
页码:568 / 584
页数:17
相关论文
共 50 条
  • [21] One-Dimensional Inverse Scattering Problem in Acoustics
    Gerogiannis, Demetrios
    Sofianos, Sofianos Antoniou
    Lagaris, Isaac Elias
    Evangelakis, Georgios Antomiou
    BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) : 248 - 257
  • [22] ON THE INVERSE LAGRANGE PROBLEM FOR ONE-DIMENSIONAL SYSTEMS
    GARCIA, TZ
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1989, 8 (02) : 109 - 118
  • [23] REIMANN SOLUTION IN ONE-DIMENSIONAL INVERSE PROBLEM
    COZ, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 61 (01) : 232 - 250
  • [24] NONUNIQUENESS IN THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM
    AKTOSUN, T
    NEWTON, RG
    INVERSE PROBLEMS, 1985, 1 (04) : 291 - 300
  • [25] Uniqueness for a one-dimensional inverse parabolic problem
    Elayyan, A
    INVERSE PROBLEMS, 1999, 15 (05) : 1283 - 1294
  • [26] THE ONE-DIMENSIONAL INVERSE PROBLEM OF REFLECTION SEISMOLOGY
    BUBE, KP
    BURRIDGE, R
    SIAM REVIEW, 1983, 25 (04) : 497 - 559
  • [27] One-Dimensional Inverse Scattering Problem in Acoustics
    Demetrios Gerogiannis
    Sofianos Antoniou Sofianos
    Isaac Elias Lagaris
    Georgios Antomiou Evangelakis
    Brazilian Journal of Physics, 2011, 41 : 248 - 257
  • [28] Solving an inverse problem in one-dimensional diffusion
    Tempo, Ruth
    Rujano, Jose
    Torres-Monzon, Carlos
    CIENCIA E INGENIERIA, 2012, 33 (03): : 137 - 145
  • [29] INVERSE PROBLEM FOR ONE-DIMENSIONAL SINGULAR OSCILLATOR
    GOSTEV, VB
    FRENKIN, AR
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1992, 33 (01): : 7 - 11
  • [30] Estimate of the spectral function of the Hamiltonian for the one-dimensional stark effect
    Ilin, VA
    Kritskov, LV
    DIFFERENTIAL EQUATIONS, 1995, 31 (09) : 1409 - 1418