Facile Microwave-Assisted Synthesis of Klockmannite CuSe Nanosheets and Their Exceptional Electrical Properties

被引:80
|
作者
Liu, Yong-Qiang [1 ]
Wang, Feng-Xia [1 ]
Xiao, Yan [1 ]
Peng, Hong-Dan [1 ]
Zhong, Hai-Jian [1 ]
Liu, Zheng-Hui [1 ]
Pan, Ge-Bo [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanob, Suzhou 215123, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
中国国家自然科学基金;
关键词
PHASE-TRANSFORMATION; TEMPLATE SYNTHESIS; PLASMON RESONANCE; CDSE NANOCRYSTALS; COPPER SELENIDES; THIN-FILMS; CU2-XSE; TRANSPORT; NANOWIRES; STABILITY;
D O I
10.1038/srep05998
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Klockmannite copper selenide nanosheets (CuSe NSs) are synthesized by a facile microwave-assisted method and fully characterized. The nanosheets have smooth surface and hexagonal shape. The lateral size is 200-500 nm x 400-800 nm and the thickness is 55 +/- 20 nm. The current-voltage characteristics of CuSe NS films show unique Ohmic and high-conducting behaviors, comparable to the thermally-deposited gold electrode. The high electrical conductivity of CuSe NSs implies their promising applications in printed electronics and nanodevices. Moreover, the local electrical variation is observed, for the first time, within an individual CuSe NS at low bias voltages (0.1 similar to 3 V) by conductive atomic force microscopy (C-AFM). This is ascribed to the quantum size effect of NS and the presence of Schottky barrier. In addition, the influence of the molar ratio of Cu2+/SeO2, reaction temperature, and reaction time on the growth of CuSe NSs is explored. The template effect of oleylamine and the intrinsic crystal nature of CuSe NS are proposed to account for the growth of hexagonal CuSe NSs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Facile microwave-assisted synthesis and antitubercular evaluation of novel aziridine derivatives
    Sarojini, Perumal
    Jeyachandran, Malaichamy
    Sriram, Dharmarajan
    Ranganathan, Palraj
    Gandhimathi, S.
    Journal of Molecular Structure, 2021, 1233
  • [32] A new facile and rapid synthesis of polyamides and polyimides by microwave-assisted polycondensation
    Imai, Y
    STEP-GROWTH POLYMERS FOR HIGH-PERFORMANCE MATERIALS: NEW SYNTHETIC METHODS, 1996, 624 : 421 - 430
  • [33] Microwave-assisted facile synthesis of liquid-crystalline alkoxycyanobiphenyls and their dimers
    Bisoyi, Hari Krishna
    Kumar, Sandeep
    PHASE TRANSITIONS, 2006, 79 (4-5) : 285 - 292
  • [34] Microwave-Assisted Facile Synthesis of Red-Shifted Azobenzene Glycoconjugates
    Poonthiyil, Vivek
    Reise, Franziska
    Despras, Guillaume
    Lindhorst, Thisbe K.
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2018, 2018 (45) : 6241 - 6248
  • [35] Facile Microwave-assisted Synthesis Manganese Doped Zinc Sulfide Nanoparticles
    Sousa, David Magalhaes
    Alves, Luis Cerqueira
    Marques, Ana
    Gaspar, Guilherme
    Lima, Joao Carlos
    Ferreira, Isabel
    SCIENTIFIC REPORTS, 2018, 8
  • [36] Facile microwave-assisted synthesis and antitubercular evaluation of novel aziridine derivatives
    Sarojini, Perumal
    Jeyachandran, Malaichamy
    Sriram, Dharmarajan
    Ranganathan, Palraj
    Gandhimathi, S.
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1233
  • [37] NEW FACILE AND RAPID SYNTHESIS OF POLYAMIDES AND POLYIMIDES BY MICROWAVE-ASSISTED POLYCONDENSATION
    IMAI, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 285 - POLY
  • [38] Facile Microwave-assisted Synthesis Manganese Doped Zinc Sulfide Nanoparticles
    David Magalhães Sousa
    Luís Cerqueira Alves
    Ana Marques
    Guilherme Gaspar
    João Carlos Lima
    Isabel Ferreira
    Scientific Reports, 8
  • [39] Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes
    Cui, L.
    Hui, K. N.
    Hui, K. S.
    Lee, S. K.
    Zhou, W.
    Wan, Z. P.
    Chi-Nhan Ha Thuc
    MATERIALS LETTERS, 2012, 75 : 175 - 178
  • [40] Facile Microwave-Assisted Synthesis and Pharmacological Appraisal of Bioactive Dihydropyrimidinone Derivatives
    Shaikh, Ambareen
    Meshram, Jyotsna S.
    CURRENT MICROWAVE CHEMISTRY, 2015, 2 (02) : 166 - 172