On identifying codes in binary Hamming spaces

被引:35
|
作者
Honkala, I [1 ]
Lobstein, A
机构
[1] Univ Turku, Dept Math, Turku 20014, Finland
[2] CNRS, F-75013 Paris, France
[3] Ecole Natl Super Telecommun Bretagne, F-75013 Paris, France
基金
芬兰科学院;
关键词
Hamming space; identifying codes; covering codes; complexity;
D O I
10.1006/jcta.2002.3263
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A binary code C subset of or equal to {0, 1}(n) is called r-identifying, if the sets B-r(x) boolean AND C, where B-r(x) is the set of all vectors within the Hamming distance r from x, are all nonempty and no two are the same. Denote by M-r(n) the minimum possible cardinality of a binary r-identifying code in {0, 1)(n). We prove that if rho is an element of [0, 1) is a constant, then lim(n-->infinity) n(-1) log(2) M-[rhon](n) = 1 - H(rho), where H(x) = -x log(2)x - (1 - x) log(2)(1 - x). We also prove that the problem whether or not a given binary linear code is lr-identifying is Pi(2)-complete. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:232 / 243
页数:12
相关论文
共 50 条
  • [21] On the traveling salesman problem in binary hamming spaces
    Cohen, G
    Litsyn, S
    Zemor, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1274 - 1276
  • [22] BINARY CODES WITH DISJOINT CODEBOOKS AND MUTUAL HAMMING DISTANCE
    GOODMAN, RMF
    [J]. ELECTRONICS LETTERS, 1974, 10 (18) : 390 - 391
  • [23] ON TRANSITIVE UNIFORM PARTITIONS OF Fn INTO BINARY HAMMING CODES
    Solov'eva, F. I.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 886 - 892
  • [24] On small covering codes in arbitrary mixed hamming spaces
    Keri, Gerzson
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (04) : 517 - 534
  • [25] r-Identifying codes in binary Hamming space, q-ary Lee space and incomplete hypercube
    Dhanalakshmi, R.
    Durairajan, C.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (02)
  • [26] CHARACTERIZATION OF EXTENDED HAMMING AND GOLAY CODES AS PERFECT CODES IN POSET BLOCK SPACES
    Dass, B. K.
    Sharma, Namita
    Verma, Rashmi
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2018, 12 (04) : 629 - 639
  • [27] Updates on Properties of Hamming Distance of Binary Fuzzy Codes over Fuzzy Vector Spaces and Their Application in Decoding Process
    Gereme, Mezgebu Manmekto
    Demamu, Jejaw
    Alaba, Berhanu Assaye
    [J]. FUZZY INFORMATION AND ENGINEERING, 2023, 15 (04) : 335 - 346
  • [28] Notes on generalized Hamming weights of some classes of binary codes
    Zihui Liu
    Jinliang Wang
    [J]. Cryptography and Communications, 2020, 12 : 645 - 657
  • [29] The input-output weight enumeration of binary Hamming codes
    Loskot, Pavel
    Beaulieu, Norman C.
    [J]. EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS, 2006, 17 (04): : 483 - 488
  • [30] Free Resolutions and Generalized Hamming Weights of Binary Linear Codes
    Garcia-Marco, Ignacio
    Marquez-Corbella, Irene
    Martinez-Moro, Edgar
    Pitones, Yuriko
    [J]. MATHEMATICS, 2022, 10 (12)