Error estimates for multilevel approximation using polyharmonic splines

被引:14
|
作者
Hales, SJ [1 ]
Levesley, J [1 ]
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
multilevel approximation; polyharmonic splines; convergence;
D O I
10.1023/A:1015674607196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Polyharmonic splines are used to interpolate data in a stationary multilevel iterative refinement scheme. By using such functions the necessary tools are provided to obtain simple pointwise error bounds on the approximation. Linear convergence between levels is shown for regular data on a scaled multiinteger grid, and a multilevel domain decomposition method.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] ERROR BOUNDS FOR THE APPROXIMATION OF GREEN KERNELS BY SPLINES
    HAMMERLIN, G
    SCHUMAKER, LL
    NUMERISCHE MATHEMATIK, 1979, 33 (01) : 17 - 22
  • [22] CARDINAL INTERPOLATION WITH POLYHARMONIC SPLINES
    MADYCH, WR
    MULTIVARIATE APPROXIMATION THEORY IV, 1989, 90 : 241 - 248
  • [23] On the dipole approximation with error estimates
    Bossmann, Lea
    Grummt, Robert
    Kolb, Martin
    LETTERS IN MATHEMATICAL PHYSICS, 2018, 108 (01) : 185 - 193
  • [24] Error estimates in Pade approximation
    Brezinski, C
    ERROR CONTROL AND ADAPTIVITY IN SCIENTIFIC COMPUTING, 1999, 536 : 75 - 85
  • [25] On the dipole approximation with error estimates
    Lea Boßmann
    Robert Grummt
    Martin Kolb
    Letters in Mathematical Physics, 2018, 108 : 185 - 193
  • [26] ON CONSISTENCY RELATIONS FOR CUBIC SPLINES-ON-SPLINES AND ASYMPTOTIC ERROR-ESTIMATES
    SAKAI, M
    USMANI, RA
    JOURNAL OF APPROXIMATION THEORY, 1985, 45 (03) : 195 - 200
  • [27] Fuzzy data approximation using smoothing cubic splines: Similarity and error analysis
    Valenzuela, O.
    Pasadas, M.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (05) : 2122 - 2144
  • [28] Refinable spaces and local approximation estimates for hierarchical splines
    Buffa, Annalisa
    Garau, Eduardo M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (03) : 1125 - 1149
  • [29] Polyharmonic splines: An approximation method for noisy scattered data of extra-large size
    Bozzini, Mira
    Lenarduzzi, Licia
    Rossini, Milvia
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (01) : 317 - 331
  • [30] Convergence and error estimates for (m,l,s)-splines
    de Silanes, MCL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (02) : 373 - 384