Evolution of one-dimensional quantum systems: Technique for separation

被引:0
|
作者
Mikhailova, TY
Pupyshev, VI
机构
[1] NS Kurnakov Gen & Inorgan Chem Inst, Moscow 117907, Russia
[2] Moscow MV Lomonosov State Univ, Fac Chem, Moscow 119899, Russia
来源
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY | 2000年 / 74卷 / 01期
关键词
D O I
暂无
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A numerical description of the evolution of a one-dimensional quantum system is given in terms of a finite-difference model, which makes it possible to obviate the necessity of handling the problem of wave packet reflection from the boundary of the coordinate network.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 50 条
  • [1] Time evolution of one-dimensional quantum many body systems
    Manmana, SR
    Muramatsu, A
    Noack, RM
    [J]. Lectures on the Physics of Highly Correlated Electron Systems IX, 2005, 789 : 269 - 278
  • [2] An area law for one-dimensional quantum systems
    Hastings, M. B.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [3] QUANTUM TUNNELING IN ONE-DIMENSIONAL SUPERCONDUCTING SYSTEMS
    BRADLEY, RM
    DONIACH, S
    [J]. JOURNAL DE PHYSIQUE, 1983, 44 (NC-3): : 919 - 926
  • [4] Quantum quenches in one-dimensional gapless systems
    Emanuele Coira
    Federico Becca
    Alberto Parola
    [J]. The European Physical Journal B, 2013, 86
  • [5] Equilibration in one-dimensional quantum hydrodynamic systems
    Sotiriadis, Spyros
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [6] Quantum quenches in one-dimensional gapless systems
    Coira, Emanuele
    Becca, Federico
    Parola, Alberto
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (02):
  • [7] Quantum Joule expansion of one-dimensional systems
    Zhang, Jin
    Meurice, Y.
    Tsai, S-W
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)
  • [8] Spherical Deformation for One-Dimensional Quantum Systems
    Gendiar, Andrej
    Krcmar, Roman
    Nishino, Tomotoshi
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2009, 122 (04): : 953 - 967
  • [9] Evolution of entanglement entropy in one-dimensional systems
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 15 - 38
  • [10] Phase separation in one-dimensional stochastic particle systems?
    Schuetz, G. M.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (04): : 523 - 535