An area law for one-dimensional quantum systems

被引:698
|
作者
Hastings, M. B.
机构
[1] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
关键词
rigorous results in statistical mechanics; entanglement in extended quantum systems (theory);
D O I
10.1088/1742-5468/2007/08/P08024
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We prove an area law for the entanglement entropy in gapped onedimensional quantum systems. The bound on the entropy grows surprisingly rapidly with the correlation length; we discuss this in terms of properties of quantum expanders and present a conjecture on matrix product states which may provide an alternate way of arriving at an area law. We also show that, for gapped, local systems, the bound on Von Neumann entropy implies a bound on R ' enyi entropy for su. ciently large a < 1 and implies the ability to approximate the ground state by a matrix product state.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improved one-dimensional area law for frustration-free systems
    Arad, Itai
    Landau, Zeph
    Vazirani, Umesh
    [J]. PHYSICAL REVIEW B, 2012, 85 (19):
  • [2] Entanglement area law for one-dimensional gauge theories and bosonic systems
    Abrahamsen, Nilin
    Tong, Yu
    Bao, Ning
    Su, Yuan
    Wiebe, Nathan
    [J]. PHYSICAL REVIEW A, 2023, 108 (04)
  • [3] QUANTUM TUNNELING IN ONE-DIMENSIONAL SUPERCONDUCTING SYSTEMS
    BRADLEY, RM
    DONIACH, S
    [J]. JOURNAL DE PHYSIQUE, 1983, 44 (NC-3): : 919 - 926
  • [4] Quantum quenches in one-dimensional gapless systems
    Emanuele Coira
    Federico Becca
    Alberto Parola
    [J]. The European Physical Journal B, 2013, 86
  • [5] Equilibration in one-dimensional quantum hydrodynamic systems
    Sotiriadis, Spyros
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (42)
  • [6] Quantum quenches in one-dimensional gapless systems
    Coira, Emanuele
    Becca, Federico
    Parola, Alberto
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (02):
  • [7] Quantum Joule expansion of one-dimensional systems
    Zhang, Jin
    Meurice, Y.
    Tsai, S-W
    [J]. PHYSICAL REVIEW A, 2020, 101 (03)
  • [8] Spherical Deformation for One-Dimensional Quantum Systems
    Gendiar, Andrej
    Krcmar, Roman
    Nishino, Tomotoshi
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2009, 122 (04): : 953 - 967
  • [9] One-dimensional dynamical systems and Benford's law
    Berger, A
    Bunimovich, LA
    Hill, TP
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) : 197 - 219
  • [10] 1/F(2) LAW IN ONE-DIMENSIONAL QUANTUM TRANSPORT - AN EXAMPLE OF WEAK CHAOS IN QUANTUM-SYSTEMS
    HAGA, T
    TAKANE, Y
    NAKAMURA, K
    [J]. CHAOS SOLITONS & FRACTALS, 1995, 5 (07) : 1077 - 1083