Anisotropic multipolar exchange interactions in systems with strong spin-orbit coupling

被引:9
|
作者
Pi, Shu-Ting [1 ]
Nanguneri, Ravindra [1 ,2 ]
Savrasov, Sergey [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
[2] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
关键词
SCHRIEFFER-WOLFF TRANSFORMATION; HAMILTONIAN TREATMENT; CERIUM; ANDERSON; ORDER; HYBRIDIZATION; BEHAVIOR; MECHANISM; MODEL;
D O I
10.1103/PhysRevB.90.045148
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a theoretical framework for computations of anisotropic multipolar exchange interactions found in many spin-orbit coupled magnetic systems and propose a method to extract these coupling constants using a density functional total energy calculation. This method is developed using a multipolar expansion of local density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean-field approximation, we show that each coupling constant can be recovered from a series of total energy calculations via what we call the "pair-flip" technique. This technique flips the relative phase of a pair of multipoles and computes the corresponding total energy cost associated with the given exchange constant. To test it, we apply our method to uranium dioxide, which is a system known to have pseudospin J = 1 superexchange induced dipolar, and superexchange plus spin-lattice induced quadrupolar orderings. Our calculation reveals that the superexchange and spin-lattice contributions to the quadrupolar exchange interactions are about the same order with ferro- and antiferromagnetic contributions, respectively. This highlights a competition rather than a cooperation between them. Our method could be a promising tool to explore magnetic properties of rare-earth compounds and hidden-order materials.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] First-principles study of the spin-orbit coupling contribution to anisotropic magnetic interactions
    Wang, Di
    Bo, Xiangyan
    Tang, Feng
    Wan, Xiangang
    [J]. PHYSICAL REVIEW B, 2023, 108 (08)
  • [22] Strong spin-orbit coupling in the noncentrosymmetric Kondo lattice
    Generalov, A.
    Falke, J.
    Nechaev, I. A.
    Otrokov, M. M.
    Guettler, M.
    Chikina, A.
    Kliemt, K.
    Seiro, S.
    Kummer, K.
    Danzenbaecher, S.
    Usachov, D.
    Kim, T. K.
    Dudin, P.
    Chulkov, E. V.
    Laubschat, C.
    Geibel, C.
    Krellner, C.
    Vyalikh, D. V.
    [J]. PHYSICAL REVIEW B, 2018, 98 (11)
  • [23] Towards a Strong Spin-Orbit Coupling Magnetoelectric Transistor
    Dowben, Peter A.
    Binek, Christian
    Zhang, Kai
    Wang, Lu
    Mei, Wai-Ning
    Bird, Jonathan P.
    Singisetti, Uttam
    Hong, Xia
    Wang, Kang L.
    Nikonov, Dmitri
    [J]. IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2018, 4 : 1 - 9
  • [24] Nonuniform superconductivity in wires with strong spin-orbit coupling
    Baumard, Julie
    Cayssol, Jerome
    Buzdin, Alexandre
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2020, 93 (07):
  • [25] Pair breaking in superconductors with strong spin-orbit coupling
    Cavanagh, D. C.
    Agterberg, Daniel F.
    Brydon, P. M. R.
    [J]. PHYSICAL REVIEW B, 2023, 107 (06)
  • [26] Nonuniform superconductivity in wires with strong spin-orbit coupling
    Julie Baumard
    Jérôme Cayssol
    Alexandre Buzdin
    [J]. The European Physical Journal B, 2020, 93
  • [27] Spin-orbit coupling of spin-frustrated systems
    Takeda, R
    Yamanaka, S
    Yamaguchi, K
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 102 (01) : 80 - 89
  • [28] Spin waves in ultracold gases with exchange and spin-orbit interactions
    T. L. Andreeva
    P. L. Rubin
    [J]. Journal of Experimental and Theoretical Physics, 2012, 115 : 249 - 251
  • [29] Spin waves in ultracold gases with exchange and spin-orbit interactions
    Andreeva, T. L.
    Rubin, P. L.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2012, 115 (02) : 249 - 251
  • [30] EXCHANGE AND SPIN-ORBIT COUPLING IN KFEF3
    FATEHALLY, R
    SASTRY, NP
    NAGARAJAN, R
    [J]. PHYSICA STATUS SOLIDI, 1968, 26 (01): : 91 - +