Estimation of R = P(Y < X) for three-parameter Weibull distribution

被引:176
|
作者
Kundu, Debasis [1 ]
Raqab, Mohammad Z. [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Univ Jordan, Dept Math, Amman 11942, Jordan
关键词
STRESS-STRENGTH; INFERENCE; P(Y-LESS-THAN-X); RELIABILITY;
D O I
10.1016/j.spl.2009.05.026
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the estimation of the stress-strength parameter R = P(Y < X), when X and Y are independent and both are three-parameter Weibull distributions with the common shape and location parameters but different scale parameters. It is observed that the maximum likelihood estimators do not exist in this case, and we propose a modified maximum likelihood estimator, and also an approximate modified maximum likelihood estimator of R. We obtain the asymptotic distribution of the modified maximum likelihood estimators of the unknown parameters and it can be used to construct the confidence interval of R. Analyses of two data sets have also been presented for illustrative purposes. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1839 / 1846
页数:8
相关论文
共 50 条
  • [1] Estimation of R=P[Y&lt;X] for three-parameter generalized Rayleigh distribution
    Kundu, Debasis
    Raqab, Mohammad Z.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (04) : 725 - 739
  • [2] Estimation of P(Y&lt;X) for the three-parameter generalized exponential distribution
    Raqab, Mohammad Z.
    Madi, Mohamed T.
    Kundu, Debasis
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (18) : 2854 - 2864
  • [3] Parameter estimation for a three-parameter Weibull distribution - a comparative study
    Bensic, Mirta
    Jankov, Dragana
    [J]. KOI 2008: 12TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH, PROCEEDINGS, 2008, : 159 - 164
  • [4] A consistent method of estimation for the three-parameter Weibull distribution
    Nagatsuka, Hideki
    Kamakura, Toshinari
    Balakrishnan, N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 58 : 210 - 226
  • [5] Estimation of P[Y &lt; X] for Weibull distributions
    Kundu, Debasis
    Gupta, Rameshwar D.
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 2006, 55 (02) : 270 - 280
  • [6] Effect Analysis of Probability Estimators on Parameter Estimation of the Three-Parameter Weibull Distribution
    Yang, Xiaoyu
    Xie, Liyang
    Song, Jiaxin
    Chen, Jianpeng
    Zhao, Bingfeng
    Yang, Yifeng
    [J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2024, 24 (01)
  • [7] Estimation of the reliability parameter for three-parameter Weibull models
    Montoya, Jose A.
    Diaz-Frances, Eloisa
    Figueroa P, Gudelia
    [J]. APPLIED MATHEMATICAL MODELLING, 2019, 67 : 621 - 633
  • [8] Three-Parameter Estimation of the Weibull Distribution Based on Least Squares Iteration
    Yang, Xiaoyu
    Song, Jiaxin
    Xie, Liyang
    Zhao, Bingfeng
    [J]. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2023, 51 (02): : 20 - 26
  • [9] Estimation of P(X &lt; Y) using ranked set sampling for the Weibull distribution
    Akgul, Fatma Gul
    Senoglu, Birdal
    [J]. QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2017, 14 (03): : 296 - 309
  • [10] Monitoring reliability for a three-parameter Weibull distribution
    Sueruecue, Baris
    Sazak, Hakan S.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) : 503 - 508