The Poisson Binomial Mechanism for Unbiased Federated Learning with Secure Aggregation

被引:0
|
作者
Chen, Wei-Ning [1 ]
Ozgur, Ayfer [1 ]
Kairouz, Peter [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Google Res, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the Poisson Binomial mechanism (PBM), a discrete differential privacy mechanism for distributed mean estimation (DME) with applications to federated learning and analytics. We provide a tight analysis of its privacy guarantees, showing that it achieves the same privacyaccuracy trade-offs as the continuous Gaussian mechanism. Our analysis is based on a novel bound on the R ' enyi divergence of two Poisson binomial distributions that may be of independent interest. Unlike previous discrete DP schemes based on additive noise, our mechanism encodes local information into a parameter of the binomial distribution, and hence the output distribution is discrete with bounded support. Moreover, the support does not increase as the privacy budget e. epsilon as in the case of additive schemes which require the addition of more noise to achieve higher privacy; on the contrary, the support becomes smaller as epsilon -> 0. The bounded support enables us to combine our mechanism with secure aggregation (SecAgg), a multi-party cryptographic protocol, without the need of performing modular clipping which results in an unbiased estimator of the sum of the local vectors. This in turn allows us to apply it in the private FL setting and provide an upper bound on the convergence rate of the SGD algorithm. Moreover, since the support of the output distribution becomes smaller as epsilon ->. 0, the communication cost of our scheme decreases with the privacy constraint e, outperforming all previous distributed DP schemes based on additive noise in the high privacy or low communication regimes.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Boosting Communication Efficiency of Federated Learning's Secure Aggregation
    Nazemi, Niousha
    Tavallaie, Omid
    Chen, Shuaijun
    Zomaya, Albert Y.
    Holz, Ralph
    2024 54TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS-SUPPLEMENTAL VOLUME, DSN-S 2024, 2024, : 157 - 158
  • [32] FedGT: Identification of Malicious Clients in Federated Learning With Secure Aggregation
    Xhemrishi, Marvin
    Oestman, Johan
    Wachter-Zeh, Antonia
    Graell i Amat, Alexandre
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 2577 - 2592
  • [33] The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
    Chen, Wei-Ning
    Choquette-Choo, Christopher A.
    Kairouz, Peter
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [34] CodedPaddedFL and CodedSecAgg: Straggler Mitigation and Secure Aggregation in Federated Learning
    Schlegel, Reent
    Kumar, Siddhartha
    Rosnes, Eirik
    Graell i Amat, Alexandre
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (04) : 2013 - 2027
  • [35] Accountable and Verifiable Secure Aggregation for Federated Learning in IoT Networks
    Yang, Xiaoyi
    Zhao, Yanqi
    Chen, Dian
    Yu, Yong
    Du, Xiaojiang
    Guizani, Mohsen
    IEEE NETWORK, 2022, 36 (05): : 173 - 179
  • [36] Secure Aggregation is Insecure: Category Inference Attack on Federated Learning
    Gao, Jiqiang
    Hou, Boyu
    Guo, Xiaojie
    Liu, Zheli
    Zhang, Ying
    Chen, Kai
    Li, Jin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (01) : 147 - 160
  • [37] Secure and efficient multi-key aggregation for federated learning
    Li, Yanling
    Lai, Junzuo
    Zhang, Rong
    Sun, Meng
    INFORMATION SCIENCES, 2024, 654
  • [38] A Flexible and Scalable Malicious Secure Aggregation Protocol for Federated Learning
    Tang, Jinling
    Xu, Haixia
    Wang, Mingsheng
    Tang, Tao
    Peng, Chunying
    Liao, Huimei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 4174 - 4187
  • [39] An End-Process Blockchain-Based Secure Aggregation Mechanism Using Federated Machine Learning
    Mbonu, Washington Enyinna
    Maple, Carsten
    Epiphaniou, Gregory
    ELECTRONICS, 2023, 12 (21)
  • [40] A Secure Federated Learning Mechanism for Data Privacy Protection
    Lin, Hui
    Liu, Wenxin
    Wang, Xiaoding
    20TH INT CONF ON UBIQUITOUS COMP AND COMMUNICAT (IUCC) / 20TH INT CONF ON COMP AND INFORMATION TECHNOLOGY (CIT) / 4TH INT CONF ON DATA SCIENCE AND COMPUTATIONAL INTELLIGENCE (DSCI) / 11TH INT CONF ON SMART COMPUTING, NETWORKING, AND SERV (SMARTCNS), 2021, : 25 - 31