Population stochastic modelling (PSM)-An R package for mixed-effects models based on stochastic differential equations

被引:27
|
作者
Klim, Soren [1 ,2 ]
Mortensen, Stig Bousgaard [1 ,3 ]
Kristensen, Niels Rode [2 ]
Overgaard, Rune Viig [2 ]
Madsen, Henrik [1 ]
机构
[1] Tech Univ Denmark, Dept Informat & Math Modelling, DK-2800 Lyngby, Denmark
[2] Novo Nordisk AS, DK-2880 Bagsvaerd, Denmark
[3] H Lundbeck & Co AS, DK-2500 Valby, Denmark
关键词
Stochastic differential equations (SDEs); State-space models; Mixed-effect; Pharmacokinetic; Pharmacodynamic; IMPLEMENTATION; PARAMETERS;
D O I
10.1016/j.cmpb.2009.02.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornoe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODES) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
  • [31] cosinoRmixedeffects: an R package for mixed-effects cosinor models (vol 22, 553, 2021)
    Hou, Ruixue
    Tomalin, Lewis E.
    Suarez-Farinas, Mayte
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [32] Mixed fractional stochastic differential equations with jumps
    Shevchenko, Georgiy
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (02) : 203 - 217
  • [33] Integrability of Solutions to Mixed Stochastic Differential Equations
    Shevchenko G.M.
    Journal of Mathematical Sciences, 2014, 198 (4) : 457 - 468
  • [34] Efficient inference for stochastic differential equation mixed-effects models using correlated particle pseudo-marginal algorithms
    Wiqvist, Samuel
    Golightly, Andrew
    McLean, Ashleigh T.
    Picchini, Umberto
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [35] Semiparametric mixed-effects analysis of PK/PD models using differential equations
    Yi Wang
    Kent M. Eskridge
    Shunpu Zhang
    Journal of Pharmacokinetics and Pharmacodynamics, 2008, 35 : 443 - 463
  • [36] Continuous wind speed models based on stochastic differential equations
    Zarate-Minano, Rafael
    Anghel, Marian
    Milano, Federico
    APPLIED ENERGY, 2013, 104 : 42 - 49
  • [37] Semiparametric mixed-effects analysis of PK/PD models using differential equations
    Wang, Yi
    Eskridge, Kent M.
    Zhang, Shunpu
    JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2008, 35 (04) : 443 - 463
  • [38] Estimating mixed-effects differential equation models
    Wang, L.
    Cao, J.
    Ramsay, J. O.
    Burger, D. M.
    Laporte, C. J. L.
    Rockstroh, J. K.
    STATISTICS AND COMPUTING, 2014, 24 (01) : 111 - 121
  • [40] Estimating mixed-effects differential equation models
    L. Wang
    J. Cao
    J. O. Ramsay
    D. M. Burger
    C. J. L. Laporte
    J. K. Rockstroh
    Statistics and Computing, 2014, 24 : 111 - 121