A CARTOPT METHOD FOR BOUND-CONSTRAINED GLOBAL OPTIMIZATION

被引:6
|
作者
Robertson, B. L. [1 ]
Price, C. J. [2 ]
Reale, M. [2 ]
机构
[1] Univ Wyoming, Dept Stat, Laramie, WY 82071 USA
[2] Univ Canterbury, Dept Math & Stat, Christchurch, New Zealand
来源
ANZIAM JOURNAL | 2013年 / 55卷 / 02期
关键词
CART; Halton sequence; numerical results; random search; stochastic global optimization;
D O I
10.1017/S1446181113000412
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A stochastic algorithm for bound-constrained global optimization is described. The method can be applied to objective functions that are nonsmooth or even discontinuous. The algorithm forms a partition on the search region using classification and regression trees (CART), which defines a region where the objective function is relatively low. Further points are drawn directly from the low region before a new partition is formed. Alternating between partition and sampling phases provides an effective method for nonsmooth global optimization. The sequence of iterates generated by the algorithm is shown to converge to an essential global minimizer with probability one under mild conditions. Nonprobabilistic results are also given when random sampling is replaced with points taken from the Halton sequence. Numerical results are presented for both smooth and nonsmooth problems and show that the method is effective and competitive in practice.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 50 条
  • [21] Projector preconditioning for partially bound-constrained quadratic optimization
    Domoradova, Marta
    Dostal, Zdenek
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2007, 14 (10) : 791 - 806
  • [22] Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC
    Paul Armand
    Ngoc Nguyen Tran
    Journal of Optimization Theory and Applications, 2021, 189 : 96 - 116
  • [23] A class of projected-search methods for bound-constrained optimization
    Ferry, Michael W.
    Gill, Philip E.
    Wong, Elizabeth
    Zhang, Minxin
    OPTIMIZATION METHODS & SOFTWARE, 2023, 39 (03): : 459 - 488
  • [24] Bound-Constrained Polynomial Optimization Using Only Elementary Calculations
    de Klerk, Etienne
    Lasserre, Jean B.
    Laurent, Monique
    Sun, Zhao
    MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (03) : 834 - 853
  • [25] Stopping rules and backward error analysis for bound-constrained optimization
    Gratton, Serge
    Mouffe, Melodie
    Toint, Philippe L.
    NUMERISCHE MATHEMATIK, 2011, 119 (01) : 163 - 187
  • [26] Bound-constrained global optimization of functions with low effective dimensionality using multiple random embeddings
    Coralia Cartis
    Estelle Massart
    Adilet Otemissov
    Mathematical Programming, 2023, 198 : 997 - 1058
  • [27] Bound-constrained global optimization of functions with low effective dimensionality using multiple random embeddings
    Cartis, Coralia
    Massart, Estelle
    Otemissov, Adilet
    MATHEMATICAL PROGRAMMING, 2023, 198 (01) : 997 - 1058
  • [28] Stopping rules and backward error analysis for bound-constrained optimization
    Serge Gratton
    Mélodie Mouffe
    Philippe L. Toint
    Numerische Mathematik, 2011, 119 : 163 - 187
  • [29] Software for large-scale bound-constrained or unconstrained optimization
    Stefan, W.
    Garnero, E.
    Renaut, R. A.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2006, 167 (03) : 1353 - 1362
  • [30] Impact of Boundary Control Methods on Bound-Constrained Optimization Benchmarking
    Kadavy, Tomas
    Viktorin, Adam
    Kazikova, Anezka
    Pluhacek, Michal
    Senkerik, Roman
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (06) : 1271 - 1280