Cupric ion substituted LiFePO4/C composites with enhanced electrochemical performance for Li-ion batteries

被引:11
|
作者
Ma, Zhipeng [1 ]
Fan, Yugian [1 ]
Shao, Guangjie [1 ,2 ]
Wang, Lin [1 ]
Song, Jianjun [1 ]
Wang, Guiling [1 ]
Liu, Tingting [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
关键词
Lithium iron phosphate; Cupric ion substitution; Cathode material; Lithium-ion battery; DOPED LIFEPO4/C; CATHODE MATERIALS; ELECTRODE MATERIALS; PHOSPHO-OLIVINES; LIXMPO4; M; LITHIUM; DIFFUSION; CONDUCTIVITY; TEMPERATURE; BEHAVIOR;
D O I
10.1016/j.electacta.2014.07.030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cupric ion substituted LiFePO4/C composites were successfully synthesized via a two-step solid state reaction method. The SEM mapping demonstrates that cupric is well substituted in LiFePO4. Interestingly, the XRD spectra indicate that the substituted cupric could enlarge the interplanar distance of planes that parallelled to [010] direction of LiFePO4 crystallines, which could widens the diffusion channels of Li+ along [010] direction. For further research, Lithium ion storage behavior of as-synthesized cupric ion substituted LiFePO4/C products were investigated via various electrochemical strategies, and the highest capacity of 152.4, 144.4, 126.7 and 110.5 mAhg(-1) was achieved by LiFe0.985Cu0.015PO4/C at discharge rate of I, 2, 5, and 10 C, respectively. Compared the result with that of LiFePO4/C, we can see that cupric ion substituted LiFePO4/C composites show enhanced electrochemical activity for Li+ storage with decreased overpotential and increased high rate capability for electrochemical reaction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:256 / 263
页数:8
相关论文
共 50 条
  • [21] Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries
    Saravanan, Kuppan
    Balaya, Palani
    Reddy, M. V.
    Chowdari, B. V. R.
    Vittal, Jagadese J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (04) : 457 - 464
  • [22] Studies on LiFePO4 as Cathode Material in Li-Ion Batteries
    Illig, J.
    Chrobak, T.
    Ender, M.
    Schmidt, J. P.
    Klotz, D.
    Ivers-Tiffee, E.
    BATTERIES AND ENERGY TECHNOLOGY (GENERAL) - 217TH ECS MEETING, 2010, 28 (30): : 3 - 17
  • [23] Urgency of LiFePO4 as cathode material for Li-ion batteries
    Guo, Kelvii Wei
    ADVANCES IN MATERIALS RESEARCH-AN INTERNATIONAL JOURNAL, 2015, 4 (02): : 63 - 76
  • [24] Preparation and Characterisation of LiFePO4/CNTMaterial for Li-Ion Batteries
    Mohamed, Rushanah
    Ji, Shan
    Linkov, Vladimir
    INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY, 2011, 2011
  • [25] Vanadium Modified LiFePO4 Cathode for Li-Ion Batteries
    Hong, Jian
    Wang, C. S.
    Chen, X.
    Upreti, S.
    Whittingham, M. Stanley
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (02) : A33 - A38
  • [26] The Effects of Carbon Nanotubes on the Electrochemical Performance of LiFePO4 Composite Cathode Materials for Li-ion Batteries
    Zhang, Haiyan
    Ran, Qiyan
    Chen, Yuting
    Zeng, Zhifeng
    Peng, Youyi
    Chen, Yimin
    2013 INTERNATIONAL CONFERENCE ON MATERIALS FOR RENEWABLE ENERGY AND ENVIRONMENT (ICMREE), VOLS 1-3, 2013, : 516 - 520
  • [27] Electrochemical performance of in situ LiFePO4 modified by N-doped graphene for Li-ion batteries
    Luo, Gui-Yang
    Gu, Yi-Jing
    Liu, Yuan
    Chen, Zi-Liang
    Huo, Yong-lin
    Wu, Fu-Zhong
    Mai, Yi
    Dai, Xin-Yi
    Deng, Yong
    CERAMICS INTERNATIONAL, 2021, 47 (08) : 11332 - 11339
  • [28] A new charging mode of Li-ion batteries with LiFePO4/C composites under low temperature
    Xiao Wei Zhao
    Guo Yu Zhang
    Lin Yang
    Jia Xi Qiang
    Zi Qiang Chen
    Journal of Thermal Analysis and Calorimetry, 2011, 104 : 561 - 567
  • [29] A new charging mode of Li-ion batteries with LiFePO4/C composites under low temperature
    Zhao, Xiao Wei
    Zhang, Guo Yu
    Yang, Lin
    Qiang, Jia Xi
    Chen, Zi Qiang
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 104 (02) : 561 - 567
  • [30] Structure and electrochemical characteristics of LiFePO4 cathode materials for rechargeable Li-Ion batteries
    A. S. Kamzin
    A. V. Bobyl’
    E. M. Ershenko
    E. I. Terukov
    D. V. Agafonov
    E. N. Kudryavtsev
    Physics of the Solid State, 2013, 55 : 1385 - 1394