Cupric ion substituted LiFePO4/C composites with enhanced electrochemical performance for Li-ion batteries

被引:11
|
作者
Ma, Zhipeng [1 ]
Fan, Yugian [1 ]
Shao, Guangjie [1 ,2 ]
Wang, Lin [1 ]
Song, Jianjun [1 ]
Wang, Guiling [1 ]
Liu, Tingting [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Hebei Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
关键词
Lithium iron phosphate; Cupric ion substitution; Cathode material; Lithium-ion battery; DOPED LIFEPO4/C; CATHODE MATERIALS; ELECTRODE MATERIALS; PHOSPHO-OLIVINES; LIXMPO4; M; LITHIUM; DIFFUSION; CONDUCTIVITY; TEMPERATURE; BEHAVIOR;
D O I
10.1016/j.electacta.2014.07.030
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cupric ion substituted LiFePO4/C composites were successfully synthesized via a two-step solid state reaction method. The SEM mapping demonstrates that cupric is well substituted in LiFePO4. Interestingly, the XRD spectra indicate that the substituted cupric could enlarge the interplanar distance of planes that parallelled to [010] direction of LiFePO4 crystallines, which could widens the diffusion channels of Li+ along [010] direction. For further research, Lithium ion storage behavior of as-synthesized cupric ion substituted LiFePO4/C products were investigated via various electrochemical strategies, and the highest capacity of 152.4, 144.4, 126.7 and 110.5 mAhg(-1) was achieved by LiFe0.985Cu0.015PO4/C at discharge rate of I, 2, 5, and 10 C, respectively. Compared the result with that of LiFePO4/C, we can see that cupric ion substituted LiFePO4/C composites show enhanced electrochemical activity for Li+ storage with decreased overpotential and increased high rate capability for electrochemical reaction. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:256 / 263
页数:8
相关论文
共 50 条
  • [1] Electrochemical performance of LiFePO4/GO composite for Li-ion batteries
    Rajoba, Swapnil J.
    Jadhav, Lata D.
    Kalubarme, Ramchandra S.
    Patil, Pramod S.
    Varma, S.
    Wani, B. N.
    CERAMICS INTERNATIONAL, 2018, 44 (06) : 6886 - 6893
  • [2] ELectrochemical performance of LiFePO4/carbon nanotubes composite electrodes for Li-ion batteries
    Zhang, Haiyan
    Chen, Yuting
    Chen, Yiming
    Zhang, Danfeng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [3] Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries
    Zaghib, K.
    Mauger, A.
    Gendron, F.
    Julien, C. M.
    IONICS, 2008, 14 (04) : 271 - 278
  • [4] Impact of incorporation of chromium on electrochemical properties of LiFePO4/C for Li-ion batteries
    Naik, Amol
    Zhou, Jian
    Gao, Chao
    Liu, Guizhen
    Wang, Lin
    MATERIALS SCIENCE-POLAND, 2015, 33 (04): : 742 - 750
  • [5] Electrochemical Performance of a Water-Based LiFePO4 Cathode for Li-Ion Batteries
    Chanhaew A.
    Aranmala K.
    Darmawan L.M.
    Nisa S.S.
    Nurohmah A.R.
    Meethong N.
    Defect and Diffusion Forum, 2022, 417 : 163 - 168
  • [6] Relationship between local structure and electrochemical performance of LiFePO4 in Li-ion batteries
    K. Zaghib
    A. Mauger
    F. Gendron
    C. M. Julien
    Ionics, 2008, 14 : 271 - 278
  • [7] Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating
    Song, Gui-Ming
    Wu, Ying
    Xu, Qiang
    Liu, Gang
    JOURNAL OF POWER SOURCES, 2010, 195 (12) : 3913 - 3917
  • [8] Enhanced electrochemical performance of LiFePO4/C wrapped with sulfur-modified reduced graphene oxide for Li-ion batteries
    Zi-Liang Chen
    Yi-Jing Gu
    Gui-Yang Luo
    Yong-Lin Huo
    Fu-Zhong Wu
    Ionics, 2022, 28 : 191 - 200
  • [9] Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability
    Shi, Yi
    Chou, Shu-Lei
    Wang, Jia-Zhao
    Wexler, David
    Li, Hui-Jun
    Liu, Hua-Kun
    Wu, Yuping
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (32) : 16465 - 16470
  • [10] Enhanced electrochemical performance of LiFePO4/C wrapped with sulfur-modified reduced graphene oxide for Li-ion batteries
    Chen, Zi-Liang
    Gu, Yi-Jing
    Luo, Gui-Yang
    Huo, Yong-Lin
    Wu, Fu-Zhong
    IONICS, 2022, 28 (01) : 191 - 200