Eigenvalue majorization inequalities for positive semidefinite block matrices and their blocks

被引:8
|
作者
Zhang, Yun [1 ,2 ]
机构
[1] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Positive semidefinite block matrices; Hermitian matrix; Eigenvalues; Majorization;
D O I
10.1016/j.laa.2013.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H = ((M)(K* N) (K)) be a positive semidefinite block matrix with square matrices M and N of the same order and denote i = root-1. The main results are the following eigenvalue majorization inequalities: for any complex number z of modulus 1, lambda(H) < 1/2 lambda ([M + N + i(zK* - <(z)over bar>K)] circle plus O) 1, + 1/2 lambda ([M + N + i((z) over barK - zK*)] circle plus O). If, in addition, K is Hermitian, then for any real number r is an element of [-2, 2], lambda(H) < 1/2 lambda ((M + N + rK) circle plus O) + 1/2 lambda ((M + N - rK) circle plus O) , while if K is skew-Hermitian, then for any real number r is an element of [-2, 2], lambda(H) < 1/2 lambda ((M + N + riK) circle plus O) + 1/2 lambda ((M + N - riK) circle plus O), where O is the zero matrix of compatible size. These majorization inequalities generalize some results due to Furuichi and Lin, Turkmen, Paksoy and Zhang, Lin and Wolkowicz. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:216 / 223
页数:8
相关论文
共 50 条