New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result

被引:91
|
作者
Bruneau, CH
Fabrie, P
机构
[1] Mathematiques Appl. de Bordeaux, Université Bordeaux 1
关键词
D O I
10.1051/m2an/1996300708151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Efficient natural conditions on open boundaries for incompressible flows are derived from a weak formulation of Navier-Stokes equations. Energy estimates in velocity-pressure are established from a mixed formulation and a rigourous proof of existence of solutions is given. As an illustration, the conditions are written down for the flow behind an obstacle in a channel. Moreover, numerical tests have shown the accuracy and robustness of such conditions.
引用
收藏
页码:815 / 840
页数:26
相关论文
共 50 条
  • [31] OPTIMAL WELL-POSEDNESS FOR THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES SYSTEM WITH GENERAL VISCOSITY
    Burtea, Cosmin
    ANALYSIS & PDE, 2017, 10 (02): : 439 - 479
  • [32] On well-posedness of Navier-Stokes variational inequalities
    Han, Weimin
    Yao, Yuan
    APPLIED MATHEMATICS LETTERS, 2024, 155
  • [33] On the well-posedness of 2-D incompressible Navier-Stokes equations with variable viscosity in critical spaces
    Xu, Huan
    Li, Yongsheng
    Zhai, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) : 6604 - 6637
  • [34] Global well-posedness for the incompressible Navier-Stokes equations in the critical Besov space under the Lagrangian coordinates
    Ogawa, Takayoshi
    Shimizu, Senjo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 274 : 613 - 651
  • [35] The well-posedness for the 3D incompressible axisymmetric Navier-Stokes equations in BMO-2
    Guo, Congchong
    Wang, Qianying
    Lu, Ming
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [36] Stability Analysis for the Incompressible Navier-Stokes Equations with Navier Boundary Conditions
    Ding, Shijin
    Li, Quanrong
    Xin, Zhouping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 603 - 629
  • [37] Well-posedness of an inverse problem of Navier-Stokes equations with the final overdetermination
    Fan, J.
    Nakamura, G.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2009, 17 (06): : 565 - 584
  • [38] LOCAL WELL-POSEDNESS OF ISENTROPIC COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM
    Gong, Huajun
    Li, Jinkai
    Liu, Xian-Gao
    Zhang, Xiaotao
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1891 - 1909
  • [39] INHOMOGENEOUS BOUNDARY VALUE PROBLEMS FOR COMPRESSIBLE NAVIER-STOKES EQUATIONS: WELL-POSEDNESS AND SENSITIVITY ANALYSIS
    Plotnikov, P. I.
    Ruban, E. V.
    Sokolowski, J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) : 1152 - 1200
  • [40] ARTIFICIAL BOUNDARY-CONDITIONS FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    HALPERN, L
    SCHATZMAN, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (03): : 83 - 86