A cold hydrological system in Gale crater, Mars

被引:33
|
作者
Fairen, Alberto G. [1 ,2 ]
Stokes, Chris R. [3 ]
Davies, Neil S. [4 ]
Schulze-Makuch, Dirk [5 ]
Rodriguez, J. Alexis P. [6 ]
Davila, Alfonso F. [7 ]
Uceda, Esther R. [8 ]
Dohm, James M. [9 ,10 ]
Baker, Victor R. [10 ]
Clifford, Stephen M. [11 ]
Mckay, Christopher P. [6 ]
Squyres, Steven W. [1 ]
机构
[1] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[2] Ctr Astrobiol, Torrejon De Ardoz 28850, Spain
[3] Univ Durham, Dept Geog, Durham DH1 3LE, England
[4] Univ Cambridge, Dept Earth Sci, Cambridge CB3 3EQ, England
[5] Washington State Univ, Sch Environm, Pullman, WA 99164 USA
[6] NASA, Ames Res Ctr, Space Sci & Astrobiol Div, Moffett Field, CA 94035 USA
[7] SETI Inst, Mountain View, CA 94043 USA
[8] Univ Autonoma Madrid, Fac Ciencias, E-28049 Madrid, Spain
[9] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 1528551, Japan
[10] Univ Arizona, Dept Hydrol & Water Resources, Tucson, AZ 85721 USA
[11] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
基金
欧洲研究理事会;
关键词
Mars; Gale crater; Glacial/periglacial modification; Glacio-fluvial activity; Fluvial erosion; Ground ice; ROCK GLACIERS; DICHOTOMY BOUNDARY; VALLES MARINERIS; MELAS-CHASMA; ICE; EVOLUTION; DEPOSITS; ORIGIN; SEDIMENTATION; PERMAFROST;
D O I
10.1016/j.pss.2014.03.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gale crater is a similar to 154-km-diameter impact crater formed during the Late Noachian/Early Hesperian at the dichotomy boundary on Mars. Here we describe potential evidence for ancient glacial, periglacial and fluvial (including glacio-fluvial) activity within Gale crater, and the former presence of ground ice and lakes. Our interpretations are derived from morphological observations using high-resolution datasets, particularly HiRISE and HRSC. We highlight a potential ancient lobate rock-glacier complex in parts of the northern central mound, with further suggestions of glacial activity in the large valley systems towards the southeast central mound. Wide expanses of ancient ground ice may be indicated by evidence for very cohesive ancient river banks and for the polygonal patterned ground common on the crater floor west of the central mound. We extend the interpretation to fluvial and lacustrine activity to the west of the central mound, as recorded by a series of interconnected canyons, channels and a possible lake basin. The emerging picture from our regional landscape analyses is the hypothesis that rock glaciers may have formerly occupied the central mound. The glaciers would have provided the liquid water required for carving the canyons and channels. Associated glaciofluvial activity could have led to liquid water running over ground ice-rich areas on the basin floor, with resultant formation of partially and/or totally ice-covered lakes in parts of the western crater floor. All this hydrologic activity is Hesperian or younger. Following this, we envisage a time of drying, with the generation of polygonal patterned ground and dune development subsequent to the disappearance of the surface liquid and frozen water. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 50 条
  • [21] Basalt-trachybasalt samples in Gale Crater, Mars
    Edwards, Peter H.
    Bridges, John C.
    Wiens, Roger
    Anderson, Ryan
    Dyar, Darby
    Fisk, Martin
    Thompson, Lucy
    Gasda, Patrick
    Filiberto, Justin
    Schwenzer, Susanne P.
    Blaney, Diana
    Hutchinson, Ian
    [J]. METEORITICS & PLANETARY SCIENCE, 2017, 52 (11) : 2391 - 2410
  • [22] Paleoclimate of Mars as captured by the stratigraphic record in Gale Crater
    Milliken, R. E.
    Grotzinger, J. P.
    Thomson, B. J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2010, 37
  • [23] The Aeolian Environment in Glen Torridon, Gale Crater, Mars
    Sullivan, R.
    Baker, M.
    Newman, C.
    Turner, M.
    Schieber, J.
    Weitz, C.
    Hallet, B.
    Ellison, D.
    Minitti, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2022, 127 (08)
  • [24] Evidence for Late Alluvial Activity in Gale Crater, Mars
    Grant, John A.
    Wilson, Sharon A.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (13) : 7287 - 7294
  • [25] Syndepositional precipitation of calcium sulfate in Gale Crater, Mars
    Kah, Linda C.
    Stack, Kathryn M.
    Eigenbrode, Jennifer L.
    Yingst, R. Aileen
    Edgett, Kenneth S.
    [J]. TERRA NOVA, 2018, 30 (06) : 431 - 439
  • [26] Curiosity's Mission of Exploration at Gale Crater, Mars
    Grotzinger, John P.
    Crisp, Joy A.
    Vasavada, Ashwin R.
    [J]. ELEMENTS, 2015, 11 (01) : 19 - 26
  • [27] Redox stratification of an ancient lake in Gale crater, Mars
    Hurowitz, J. A.
    Grotzinger, J. P.
    Fischer, W. W.
    McLennan, S. M.
    Milliken, R. E.
    Stein, N.
    Vasavada, A. R.
    Blake, D. F.
    Dehouck, E.
    Eigenbrode, J. L.
    Fairen, A. G.
    Frydenvang, J.
    Gellert, R.
    Grant, J. A.
    Gupta, S.
    Herkenhoff, K. E.
    Ming, D. W.
    Rampe, E. B.
    Schmidt, M. E.
    Siebach, K. L.
    Stack-Morgan, K.
    Sumner, D. Y.
    Wiens, R. C.
    [J]. SCIENCE, 2017, 356 (6341)
  • [28] Surficial properties in Gale Crater, Mars, from Mars Odyssey THEMIS data
    Pelkey, SM
    Jakosky, BM
    Christensen, PR
    [J]. ICARUS, 2004, 167 (02) : 244 - 270
  • [29] Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars
    Peters, G. H.
    Carey, E. M.
    Anderson, R. C.
    Abbey, W. J.
    Kinnett, R.
    Watkins, J. A.
    Schemel, M.
    Lashore, M. O.
    Chasek, M. D.
    Green, W.
    Beegle, L. W.
    Vasavada, A. R.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (01) : 108 - 116
  • [30] Lava filling of Gale crater from Tyrrhenus Mons on Mars
    Gasparri, Daniele
    Leone, Giovanni
    Cataldo, Vincenzo
    Punjabi, Venkat
    Nandakumar, Sangeetha
    [J]. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2020, 389