Sparse Matrix Feature Selection in Multi-label Learning

被引:0
|
作者
Yang, Wenyuan [1 ]
Zhou, Bufang [1 ]
Zhu, William [1 ]
机构
[1] Minnan Normal Univ, Lab Granular Comp, Zhangzhou, Peoples R China
关键词
Multi-label learning; feature selection; sparse matrix; machine learning;
D O I
10.1007/978-3-319-25783-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High-dimensional data are commonly met in multi-label learning, and dimensionality reduction is an important and challenging work. In this paper, we propose sparse matrix feature selection to reduce data dimension in multi-label learning. First, the feature selection problem is formalized by sparse matrix. Second, an sparse matrix feature selection algorithm is proposed. Third, four feature selection are compared with the proposed methods and parameter optimization analysis is also provide. Experiments reported the proposed algorithms outperform the other methods in most cases of tested datasets.
引用
收藏
页码:332 / 339
页数:8
相关论文
共 50 条
  • [41] Multi-label feature selection based on label correlations and feature redundancy
    Fan, Yuling
    Chen, Baihua
    Huang, Weiqin
    Liu, Jinghua
    Weng, Wei
    Lan, Weiyao
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [42] Multi-label feature selection based on label distribution and feature complementarity
    Qian, Wenbin
    Long, Xuandong
    Wang, Yinglong
    Xie, Yonghong
    APPLIED SOFT COMPUTING, 2020, 90
  • [43] Multi-label feature selection based on logistic regression and manifold learning
    Yao Zhang
    Yingcang Ma
    Xiaofei Yang
    Applied Intelligence, 2022, 52 : 9256 - 9273
  • [44] A bipartite matching-based feature selection for multi-label learning
    Hashemi, Amin
    Dowlatshahi, Mohammad Bagher
    Nezamabadi-Pour, Hossein
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (02) : 459 - 475
  • [45] Integration of deep learning model and feature selection for multi-label classification
    Ebrahimi, Hossein
    Majidzadeh, Kambiz
    Gharehchopogh, Farhad Soleimanian
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2871 - 2883
  • [46] A bipartite matching-based feature selection for multi-label learning
    Amin Hashemi
    Mohammad Bagher Dowlatshahi
    Hossein Nezamabadi-Pour
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 459 - 475
  • [47] Feature Selection for Multi-label Learning Using Mutual Information and GA
    Yu, Ying
    Wang, Yinglong
    ROUGH SETS AND KNOWLEDGE TECHNOLOGY, RSKT 2014, 2014, 8818 : 454 - 463
  • [48] Low-rank learning for feature selection in multi-label classification
    Lim, Hyunki
    PATTERN RECOGNITION LETTERS, 2023, 172 : 106 - 112
  • [49] Multi-label feature selection based on logistic regression and manifold learning
    Zhang, Yao
    Ma, Yingcang
    Yang, Xiaofei
    APPLIED INTELLIGENCE, 2022, 52 (08) : 9256 - 9273
  • [50] Integrating label confidence-based feature selection for partial multi-label learning
    Han, Qingqi
    Hu, Liang
    Gao, Wanfu
    PATTERN RECOGNITION, 2025, 161