Incremental network design with shortest paths

被引:38
|
作者
Baxter, Matthew [1 ]
Elgindy, Tarek [1 ]
Ernst, Andreas T. [1 ]
Kalinowski, Thomas [2 ]
Savelsbergh, Martin W. P. [2 ]
机构
[1] CSIRO, CSIRO Math Informat & Stat, Canberra, ACT, Australia
[2] Univ Newcastle, Callaghan, NSW 2308, Australia
关键词
Network design; Multi-period; Heuristic; Approximation algorithm; Integer programming; INFRASTRUCTURE SYSTEMS; RESTORATION;
D O I
10.1016/j.ejor.2014.04.018
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We introduce a class of incremental network design problems focused on investigating the optimal choice and timing of network expansions. We concentrate on an incremental network design problem with shortest paths. We investigate structural properties of optimal solutions, show that the simplest variant is NP-hard, analyze the worst-case performance of natural greedy heuristics, derive a 4-approximation algorithm, and conduct a small computational study. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:675 / 684
页数:10
相关论文
共 50 条
  • [31] Discovery of network properties with all-shortest-paths queries
    Bilo, Davide
    Erlebach, Thomas
    Mihalak, Matus
    Widmayer, Peter
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, 2008, 5058 : 89 - +
  • [32] RNE: computing shortest paths using road network embedding
    Zhao, Tianyu
    Huang, Shuai
    Wang, Yong
    Chai, Chengliang
    Li, Guoliang
    VLDB JOURNAL, 2022, 31 (03): : 507 - 528
  • [33] RNE: computing shortest paths using road network embedding
    Tianyu Zhao
    Shuai Huang
    Yong Wang
    Chengliang Chai
    Guoliang Li
    The VLDB Journal, 2022, 31 : 507 - 528
  • [34] The inverse shortest paths problem with upper bounds on shortest paths costs
    Burton, D
    Pulleyblank, WR
    Toint, PL
    NETWORK OPTIMIZATION, 1997, 450 : 156 - 171
  • [35] Discovery of network properties with all-shortest-paths queries
    Bilo, Davide
    Erlebach, Thomas
    Mihalak, Matus
    Widmayer, Peter
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (14-15) : 1626 - 1637
  • [36] Shortest paths in a network with time-dependent flow speeds
    Sung, K
    Bell, MGH
    Seong, M
    Park, S
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 121 (01) : 32 - 39
  • [37] FUZZY SHORTEST PATHS
    KLEIN, CM
    FUZZY SETS AND SYSTEMS, 1991, 39 (01) : 27 - 41
  • [38] SHORTEST PATHS IN PERCOLATION
    BARMA, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (06): : L277 - L283
  • [39] Updating shortest paths
    Edelkamp, S
    ECAI 1998: 13TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1998, : 655 - 659
  • [40] On Universal Shortest Paths
    Turner, Lara
    Hamacher, Horst W.
    OPERATIONS RESEARCH PROCEEDINGS 2010, 2011, : 313 - 318