A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy

被引:156
|
作者
Bristow, A. D. [1 ]
Karaiskaj, D.
Dai, X.
Zhang, T.
Carlsson, C.
Hagen, K. R.
Jimenez, R.
Cundiff, S. T.
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2009年 / 80卷 / 07期
基金
美国国家科学基金会;
关键词
Fourier transform spectrometers; Michelson interferometers; 2-DIMENSIONAL INFRARED-SPECTROSCOPY; SPECTRAL INTERFEROMETRY; FEMTOSECOND SPECTROSCOPY; ELECTRONIC SPECTROSCOPY; PHOTON-ECHOES; PHASE; SEMICONDUCTORS; STABILIZATION; TECHNOLOGY; PEPTIDES;
D O I
10.1063/1.3184103
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The JILA multidimensional optical nonlinear spectrometer (JILA-MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delay between them while maintaining phase stability. The JILA-MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy, which records the phase of the nonlinear signal as a function of the time delay between several of the excitation pulses. The resulting multidimensional spectrum is obtained from a Fourier transform. This spectrum can resolve, separate, and isolate coherent contributions to the light-matter interactions associated with electronic excitation at optical frequencies. To show the versatility of the JILA-MONSTR, several demonstrations of two-dimensional Fourier-transform spectroscopy are presented, including an example of a phase-cycling scheme that reduces noise. Also shown is a spectrum that accesses two-quantum coherences, where all excitation pulses require phase locking for detection of the signal.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] OPTICAL TOLERANCES IN FOURIER-TRANSFORM SPECTROSCOPY
    BIRCH, JR
    [J]. 7TH INTERNATIONAL CONFERENCE ON FOURIER TRANSFORM SPECTROSCOPY, 1989, 1145 : 393 - 394
  • [2] PULSE FOURIER-TRANSFORM OPTICAL SPECTROSCOPY
    GROSSMAN, SB
    SCHENZLE, A
    BREWER, RG
    [J]. PHYSICAL REVIEW LETTERS, 1977, 38 (06) : 275 - 278
  • [3] Continuously tunable optical multidimensional Fourier-transform spectrometer
    Dey, P.
    Paul, J.
    Bylsma, J.
    Deminico, S.
    Karaiskaj, D.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (02):
  • [4] IMPERFECT OPTICAL FIGURE IN FOURIER-TRANSFORM SPECTROSCOPY
    BIRCH, JR
    [J]. INFRARED PHYSICS, 1990, 30 (02): : 155 - 159
  • [5] A Versatile Setup for Fourier-Transform Infrared Magneto-Spectroscopy
    Midlikova, Jana Dubnicka
    Sedivy, Matus
    Sojka, Antonin
    Santana, Vinicius Tadeu
    Dubroka, Adam
    Neugebauer, Petr
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [6] OPTICAL FOURIER-TRANSFORM TECHNIQUES FOR ADVANCED FOURIER SPECTROSCOPY SYSTEMS
    CASASENT, D
    PSALTIS, D
    [J]. APPLIED OPTICS, 1980, 19 (12): : 2034 - 2037
  • [7] FOURIER-TRANSFORM SPECTROSCOPY
    BECKER, ED
    FARRAR, TC
    [J]. SCIENCE, 1972, 178 (4059) : 361 - &
  • [8] FOURIER-TRANSFORM SPECTROSCOPY
    CUTHBERT, J
    [J]. JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1974, 7 (05): : 328 - 336
  • [9] Set-up for broadband Fourier-transform multidimensional electronic spectroscopy
    Al Haddad, A.
    Chauvet, A.
    Ojeda, J.
    Arrell, C.
    van Mourik, F.
    Auboeck, G.
    Chergui, M.
    [J]. OPTICS LETTERS, 2015, 40 (03) : 312 - 315
  • [10] SOME CONSEQUENCES OF THE FOURIER-TRANSFORM IN FOURIER-TRANSFORM RAMAN-SPECTROSCOPY
    PARKER, SF
    CONROY, N
    PATEL, V
    [J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1993, 49 (5-6): : 657 - 666