Dynamic Learning of SCRF for Feature Selection and Classification of Hyperspectral Imagery

被引:0
|
作者
Zhong, Ping [1 ]
Qian, Zhiming [1 ]
Wang, Runsheng [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, ATR Natl Lab, Changsha 410073, Hunan, Peoples R China
关键词
Conditional random field; classification; feature selection; CRFS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the feature selection and contextual classification of hyperspectral images through the sparse conditional random field (SCRF) model. To relieve the heavy degeneration of classification performance caused by the characteristics of the hyperspectral data and the oversparsity when SCRF selects a small feature subset, we develop a dynamic learning framework to train the SCRF. Under the piecewise training framework, the proposed dynamic learning method of SCRF can be implemented efficiently through separated dynamic sparse trainings of simple classifiers defined by corresponding potentials. Experiments on the real-world hyperspectral images attest to the effectiveness of the proposed method.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [31] Cross Correlation Based Clustering for Feature Selection in Hyperspectral Imagery
    Cukur, Huseyin
    Binol, Hamidullah
    Uslu, Faruk Sukru
    Kalayci, Yusuf
    Bal, Abdullah
    2015 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), 2015, : 232 - 236
  • [32] Enhancing the performance of feature selection algorithms for classifying hyperspectral imagery
    Kumar, M
    Duffy, CJ
    Reed, PM
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 3264 - 3267
  • [33] Three-Dimensional Surface Feature for Hyperspectral Imagery Classification
    Jia, Sen
    Wu, Kuilin
    Zhang, Meng
    Hu, Jie
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 270 - 278
  • [34] GABOR PHASE FEATURE-BASED HYPERSPECTRAL IMAGERY CLASSIFICATION
    Jia, Sen
    Xie, Huimin
    Deng, Lin
    Shen, Linlin
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1291 - 1296
  • [35] GABOR FEATURE BASED DICTIONARY FUSION FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
    Jia, Sen
    Hu, Jie
    Tang, Guihua
    Shen, Linlin
    Deng, Lin
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 433 - 436
  • [36] An Adaptive Supervised Nonlinear Feature Extraction for Hyperspectral Imagery Classification
    Haimiao Ge
    Liguo Wang
    Cheng Li
    Yanzhong Liu
    Ruixin Chen
    Journal of the Indian Society of Remote Sensing, 2018, 46 : 367 - 376
  • [37] An Adaptive Supervised Nonlinear Feature Extraction for Hyperspectral Imagery Classification
    Ge, Haimiao
    Wang, Liguo
    Li, Cheng
    Liu, Yanzhong
    Chen, Ruixin
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2018, 46 (03) : 367 - 376
  • [38] Hyperspectral Imagery Classification Based on Sparse Feature and Neighborhood Homogeneity
    Jinghui Yang
    Liguo Wang
    Jinxi Qian
    Journal of the Indian Society of Remote Sensing, 2015, 43 : 445 - 457
  • [39] Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization
    Samadzadegan, Farhad
    Hasani, Hadiseh
    Schenk, Toni
    CANADIAN JOURNAL OF REMOTE SENSING, 2012, 38 (02) : 139 - 156
  • [40] Hashing Based Hierarchical Feature Representation for Hyperspectral Imagery Classification
    Pan, Bin
    Shi, Zhenwei
    Xu, Xia
    Yang, Yi
    REMOTE SENSING, 2017, 9 (11)