Dynamic Learning of SCRF for Feature Selection and Classification of Hyperspectral Imagery

被引:0
|
作者
Zhong, Ping [1 ]
Qian, Zhiming [1 ]
Wang, Runsheng [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, ATR Natl Lab, Changsha 410073, Hunan, Peoples R China
关键词
Conditional random field; classification; feature selection; CRFS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the feature selection and contextual classification of hyperspectral images through the sparse conditional random field (SCRF) model. To relieve the heavy degeneration of classification performance caused by the characteristics of the hyperspectral data and the oversparsity when SCRF selects a small feature subset, we develop a dynamic learning framework to train the SCRF. Under the piecewise training framework, the proposed dynamic learning method of SCRF can be implemented efficiently through separated dynamic sparse trainings of simple classifiers defined by corresponding potentials. Experiments on the real-world hyperspectral images attest to the effectiveness of the proposed method.
引用
收藏
页码:254 / 263
页数:10
相关论文
共 50 条
  • [1] Learning Sparse CRFs for Feature Selection and Classification of Hyperspectral Imagery
    Zhong, Ping
    Wang, Runsheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (12): : 4186 - 4197
  • [2] Dynamic learning of SMLR for feature selection and classification of hyperspectral data
    Zhong, Ping
    Zhang, Peng
    Wang, Runsheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (02) : 280 - 284
  • [3] FEATURE EXTRACTION AND SELECTION HYBRID ALGORITHM FOR HYPERSPECTRAL IMAGERY CLASSIFICATION
    Jia, Sen
    Qian, Yuntao
    Li, Jiming
    Liu, Weixiang
    Ji, Zhen
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 72 - 75
  • [4] STRUCTURED SPARSE MODEL BASED FEATURE SELECTION AND CLASSIFICATION FOR HYPERSPECTRAL IMAGERY
    Qian, Yuntao
    Zhou, Jun
    Ye, Minchao
    Wang, Qi
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1771 - 1774
  • [5] Semi-Supervised Discriminant Feature Selection for Hyperspectral Imagery Classification
    Dong, Chunhua
    Naghedolfeizi, Masoud
    Aberra, Dawit
    Zeng, Xiangyan
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [6] Semi-supervised feature learning for disjoint hyperspectral imagery classification
    Cao, Xianghai
    Li, Chenguang
    Feng, Jie
    Jiao, Licheng
    NEUROCOMPUTING, 2023, 526 : 9 - 18
  • [7] 3-D GaussianGabor Feature Extraction and Selection for Hyperspectral Imagery Classification
    Jia, Sen
    Zhuang, Jiayue
    Deng, Lin
    Zhu, Jiasong
    Xu, Meng
    Zhou, Jun
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 8813 - 8826
  • [8] ContrastNet: Unsupervised feature learning by autoencoder and prototypical contrastive learning for hyperspectral imagery classification
    Cao, Zeyu
    Li, Xiaorun
    Feng, Yueming
    Chen, Shuhan
    Xia, Chaoqun
    Zhao, Liaoying
    NEUROCOMPUTING, 2021, 460 : 71 - 83
  • [9] DYNAMIC BAND SELECTION FOR HYPERSPECTRAL IMAGERY
    Liu, Keng-Hao
    Chang, Chein-I
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2365 - 2368
  • [10] Latent representation learning based autoencoder for unsupervised feature selection in hyperspectral imagery
    Wang, Xinxin
    Wang, Zhenyu
    Zhang, Yongshan
    Jiang, Xinwei
    Cal, Zhihua
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (09) : 12061 - 12075