Numerical solution to the problem of variational assimilation of operational observational data on the ocean surface temperature

被引:6
|
作者
Agoshkov, V. I. [1 ]
Lebedev, S. A. [2 ]
Parmuzin, E. I. [1 ]
机构
[1] Russian Acad Sci, Inst Numer Math, Moscow 119991, Russia
[2] Russian Acad Sci, Geophys Ctr, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
ALGORITHMS; DYNAMICS; MODEL;
D O I
10.1134/S000143380901006X
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The problem of variational assimilation of satellite observational data on the ocean surface temperature is formulated and numerically investigated in order to reconstruct surface heat fluxes with the use of the global three-dimensional model of ocean hydrothermodynamics developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), and observational data close to the data actually observed in specified time intervals. The algorithms of the numerical solution to the problem are elaborated and substantiated, and the data assimilation block is developed and incorporated into the global three-dimensional model. Numerical experiments are carried out with the use of the Indian Ocean water area as an example. The data on the ocean surface temperature over the year 2000 are used as observational data. Numerical experiments confirm the theoretical conclusions obtained and demonstrate the expediency of combining the model with a block of assimilating operational observational data on the surface temperature.
引用
收藏
页码:69 / 101
页数:33
相关论文
共 50 条
  • [31] Sensitivity of functionals in problems of variational assimilation of observational data
    Shutyaev, V. P.
    Le Dimet, F. -X.
    Agoshkov, V. I.
    Parmuzin, E. I.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2015, 51 (03) : 342 - 350
  • [32] Variational data assimilation in ocean model: A simulation experiment
    Kumar, R
    Basu, S
    Pandey, PC
    INDIAN JOURNAL OF MARINE SCIENCES, 1998, 27 (01): : 52 - 59
  • [33] Conditioning and preconditioning of the variational data assimilation problem
    Haben, S. A.
    Lawless, A. S.
    Nichols, N. K.
    COMPUTERS & FLUIDS, 2011, 46 (01) : 252 - 256
  • [34] A multivariate balance operator for variational ocean data assimilation
    Weaver, A. T.
    Deltel, C.
    Machu, E.
    Ricci, S.
    Daget, N.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3605 - 3625
  • [35] Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images
    Korotaev, G. K.
    Huot, E.
    Le Dimet, F. -X.
    Herlin, I.
    Stanichny, S. V.
    Solovyev, D. M.
    Wu, L.
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (04) : 1464 - 1475
  • [36] A Global-Ocean-Data Assimilation for Operational Oceanography
    Qin, Yinghao
    Yu, Qinglong
    Wan, Liying
    Liu, Yang
    Mo, Huier
    Wang, Yi
    Meng, Sujing
    Wu, Xiangyu
    Sui, Dandan
    Xie, Jiping
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [37] Numerical solution for an inverse variational problem
    Garralda-Guillem, A., I
    Montiel Lopez, P.
    OPTIMIZATION AND ENGINEERING, 2021, 22 (04) : 2537 - 2552
  • [38] Numerical solution for an inverse variational problem
    A. I. Garralda-Guillem
    P. Montiel López
    Optimization and Engineering, 2021, 22 : 2537 - 2552
  • [39] Development of a variational data assimilation system for the diurnal cycle of sea surface temperature
    While, J.
    Martin, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (06) : 2845 - 2862
  • [40] Numerical Experiments with the Nemo Ocean Circulation Model and the Assimilation of Observational Data from Argo Drifters
    Belyaev K.P.
    Kuleshov A.A.
    Resnyanskii Y.D.
    Smirnov I.N.
    Fadeev R.Y.
    Mathematical Models and Computer Simulations, 2023, 15 (5) : 842 - 849