Protein post-translational modifications and misfolding: New concepts in heart failure

被引:45
|
作者
del Monte, Federica [1 ]
Agnetti, Giulio [2 ,3 ]
机构
[1] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Boston, MA 02215 USA
[2] Johns Hopkins Univ, Div Cardiol, Dept Med, Baltimore, MD 21224 USA
[3] Univ Bologna, DIBINEM, Bologna, Italy
关键词
Heart failure; Post-translational modifications; Pre-amyloid oligomers; GLYCATION END-PRODUCTS; AMYLOID PRECURSOR PROTEIN; CARDIAC DYSFUNCTION; ALZHEIMERS-DISEASE; MECHANISMS; BETA; DEXAMETHASONE; BORTEZOMIB; OLIGOMERS; TOXICITY;
D O I
10.1002/prca.201400037
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A new concept in the field of heart-failure (HF) research points to a role of misfolded proteins, forming preamyloid oligomers (PAOs), in cardiac toxicity. This is largely based on few studies reporting the presence of PAOs, similar to those observed in neurodegenerative diseases, in experimental and human HF. As the majority of proteinopathies are sporadic in nature, protein post-translational modifications (PTMs) likely play a major role in this growing class of diseases. In fact, PTMs are known regulators of protein folding and of the formation of amyloid species in well-established proteinopathies. Proteomics has been instrumental in identifying both chemical and enzymatic PTMs, with a potential impact on protein mis-/folding. Here we provide the basics on how proteins fold along with a few examples of PTMs known to modulate protein misfolding and aggregation, with particular focus on the heart. Due to its innovative content and the growing awareness of the toxicity of misfolded proteins, an "Alzheimer's theory of HF" is timely. Moreover, the continuous innovations in proteomic technologies will help pinpoint PTMs that could contribute to the process. This nuptial between biology and technology could greatly assist in identifying biomarkers with increased specificity as well as more effective therapies.
引用
收藏
页码:534 / 542
页数:9
相关论文
共 50 条
  • [31] Irreversible oxidative post-translational modifications in heart disease
    Tomin, Tamara
    Schittmayer, Matthias
    Honeder, Sophie
    Heininger, Christoph
    Birner-Gruenberger, Ruth
    EXPERT REVIEW OF PROTEOMICS, 2019, 16 (08) : 681 - 693
  • [32] Pathological implication of protein post-translational modifications in cancer
    Pan, Sheng
    Chen, Ru
    MOLECULAR ASPECTS OF MEDICINE, 2022, 86
  • [33] Unusual post-translational protein modifications: the benefits of sophistication
    Ravikiran, Boddepalli
    Mahalakshmi, Radhakrishnan
    RSC ADVANCES, 2014, 4 (64) : 33958 - 33974
  • [34] The Role of Protein Post-Translational Modifications in Fruit Ripening
    Li, Ting
    Zeng, Jing
    Yang, Xinquan
    Garcia-Caparros, Pedro
    Duan, Xuewu
    HORTICULTURAE, 2024, 10 (10)
  • [35] Post-translational modifications in mitochondria: protein signaling in the powerhouse
    Stram, Amanda R.
    Payne, R. Mark
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2016, 73 (21) : 4063 - 4073
  • [36] Post-translational protein modifications in antigen recognition and autoimmunity
    Doyle, HA
    Mamula, MJ
    TRENDS IN IMMUNOLOGY, 2001, 22 (08) : 443 - 449
  • [37] Protein post-translational modifications in the regulation of cancer hallmarks
    Wang, Haiying
    Yang, Liqian
    Liu, Minghui
    Luo, Jianyuan
    CANCER GENE THERAPY, 2023, 30 (04) : 529 - 547
  • [38] The role of protein post-translational modifications in prostate cancer
    Hao, Yinghui
    Gu, Chenqiong
    Luo, Wenfeng
    Shen, Jian
    Xie, Fangmei
    Zhao, Ying
    Song, Xiaoyu
    Han, Zeping
    He, Jinhua
    PEERJ, 2024, 12
  • [39] In silico prediction and characterization of protein post-translational modifications
    Gianazza, Elisabetta
    Parravicini, Chiara
    Primi, Roberto
    Miller, Ingrid
    Eberini, Ivano
    JOURNAL OF PROTEOMICS, 2016, 134 : 65 - 75
  • [40] The characterization of protein post-translational modifications by mass spectrometry
    Schweppe, RE
    Haydon, CE
    Lewis, TS
    Resing, KA
    Ahn, NG
    ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (06) : 453 - 461