NON-CONSTANT POSITIVE STEADY STATES FOR A STRONGLY COUPLED NONLINEAR REACTION-DIFFUSION SYSTEM ARISING IN POPULATION DYNAMICS

被引:0
|
作者
Wen, Zijuan [1 ]
Qi, Yuan [2 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
[2] Longdong Univ, Dept Math, Qingyang 745000, Peoples R China
基金
中国国家自然科学基金;
关键词
Diffusion; cross-diffusion; food chain; non-constant positive steady states; stationary pattern formation; PREY-PREDATOR SYSTEM; CROSS-DIFFUSION; HETEROGENEOUS ENVIRONMENT; COEXISTENCE STATES; ELLIPTIC-SYSTEMS; MUTUALIST MODEL; SELF-DIFFUSION; INSTABILITY; BIFURCATION;
D O I
10.1216/RMJ-2015-45-4-1333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a strongly coupled reaction-diffusion system describing three interacting species in a simple food chain structure. Based on the Leray-Schauder degree theory, the existence of non-constant positive steady states is investigated. The results indicate that, when the intrinsic growth rate of the middle species is small, cross-diffusions of the predators versus the preys are helpful to create global coexistence (stationary patterns).
引用
收藏
页码:1333 / 1355
页数:23
相关论文
共 50 条
  • [31] An exact bifurcation diagram for a reaction-diffusion equation arising in population dynamics
    Goddard, Jerome, II
    Morris, Quinn A.
    Robinson, Stephen B.
    Shivaji, Ratnasingham
    BOUNDARY VALUE PROBLEMS, 2018,
  • [32] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Zha, Shu-ling
    Li, Bing-fang
    Yang, Xiu-xiang
    Qu, Gai-zhu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 783 - 798
  • [33] Non-constant positive steady states of the epidemic model with non-monotonic incidence rate
    Shu-ling Zha
    Bing-fang Li
    Xiu-xiang Yang
    Gai-zhu Qu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 783 - 798
  • [34] Non-constant positive steady-states of a predator-prey-mutualist model
    Chen, WY
    Wang, MX
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (02) : 243 - 254
  • [35] NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL
    CHEN WENYAN WANG MINGXIN Department of Mathematics
    ChineseAnnalsofMathematics, 2004, (02) : 243 - 254
  • [36] Analysis for a system of coupled reaction-diffusion parabolic equations arising in biology
    Boy, A
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (04) : 15 - 21
  • [37] Existence and bifurcation of non-constant positive steady states for a tumor-immune model
    Wang, Jingjing
    Zheng, Hongchan
    Jia, Yunfeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [38] Singular perturbation approach to a 3-component reaction-diffusion system arising in population dynamics
    Kan-On, Y
    Mimura, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 29 (06) : 1519 - 1536
  • [39] Propagation dynamics for a reaction-diffusion system with nonlinear competition
    Ma, Manjun
    Chen, Yangwei
    Han, Yazhou
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2025, 81
  • [40] Solution of a Strongly Coupled Reaction-Diffusion System by the Homotopy Analysis Method
    Ghoreishi, M.
    Ismail, A. I. B. Md
    Rashid, A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (03) : 471 - 481