Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing

被引:173
|
作者
Montiel-Gonzalez, Maria Fernanda [1 ,2 ]
Vallecillo-Viejo, Isabel [1 ,3 ]
Yudowski, Guillermo A. [1 ,4 ]
Rosenthal, Joshua J. C. [1 ,2 ]
机构
[1] Univ Puerto Rico, Inst Neurobiol, San Juan, PR 00901 USA
[2] Univ Puerto Rico, Dept Biochem, San Juan, PR 00936 USA
[3] Univ Puerto Rico, Dept Pharmacol, San Juan, PR 00936 USA
[4] Univ Puerto Rico, Dept Anat & Neurobiol, San Juan, PR 00936 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
DOUBLE-STRANDED-RNA; MESSENGER-RNA; ADENOSINE DEAMINASES; BINDING PEPTIDES; PURIFICATION; PROTEIN; ENZYME; CFTR; SEQUENCES; CHANNELS;
D O I
10.1073/pnas.1306243110
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Adenosine deaminases that act on RNA are a conserved family of enzymes that catalyze a natural process of site-directed mutagenesis. Biochemically, they convert adenosine to inosine, a nucleotide that is read as guanosine during translation; thus when editing occurs in mRNAs, codons can be recoded and the changes can alter protein function. By removing the endogenous targeting domains from human adenosine deaminase that acts on RNA 2 and replacing them with an antisense RNA oligonucleotide, we have engineered a recombinant enzyme that can be directed to edit anywhere along the RNA registry. Here we demonstrate that this enzyme can efficiently and selectively edit a single adenosine. As proof of principle in vitro, we correct a premature termination codon in mRNAs encoding the cystic fibrosis transmembrane conductance regulator anion channel. In Xenopus oocytes, we show that a genetically encoded version of our editase can correct cystic fibrosis transmembrane conductance regulator mRNA, restore full-length protein, and reestablish functional chloride currents across the plasma membrane. Finally, in a human cell line, we show that a genetically encoded version of our editase and guide RNA can correct a nonfunctional version of enhanced green fluorescent protein, which contains a premature termination codon. This technology should spearhead powerful approaches to correcting a wide variety of genetic mutations and fine-tuning protein function through targeted nucleotide deamination.
引用
收藏
页码:18285 / 18290
页数:6
相关论文
共 50 条
  • [41] THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR GENE
    TSUI, LC
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1995, 151 (03) : S47 - S53
  • [42] PHOSPHORYLATION OF THE CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR
    PICCIOTTO, MR
    COHN, JA
    BERTUZZI, G
    GREENGARD, P
    NAIRN, AC
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1992, 267 (18) : 12742 - 12752
  • [43] Cystic fibrosis transmembrane conductance regulator and adenosine triphosphate
    Abraham, EH
    Okunieff, P
    Scala, S
    Vos, P
    Oosterveld, MJS
    Chen, AY
    Shrivastav, B
    Guidotti, G
    SCIENCE, 1997, 275 (5304) : 1324 - 1325
  • [44] Pharmacology of CFTR (cystic fibrosis transmembrane conductance regulator)
    Cuthbert, A. W.
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2004, 18 : 22 - 22
  • [45] A transistor model for the cystic fibrosis transmembrane conductance regulator
    Hunt, William D.
    Mccarty, Nael A.
    Marin, Eduardo Martinez
    Westafer, Ryan S.
    Yamin, Phillip R.
    Cui, Guiying
    Eckford, Andrew W.
    Denison, Douglas R.
    BIOPHYSICAL REPORTS, 2023, 3 (02):
  • [46] ATPase activity of the cystic fibrosis transmembrane conductance regulator
    Li, CH
    Ramjeesingh, M
    Wang, W
    Garami, E
    Hewryk, M
    Lee, D
    Rommens, JM
    Galley, K
    Bear, CE
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (45) : 28463 - 28468
  • [47] Misfolding of the cystic fibrosis transmembrane conductance regulator and disease
    Cheung, Joanne C.
    Deber, Charles M.
    BIOCHEMISTRY, 2008, 47 (06) : 1465 - 1473
  • [48] Targeted Activation of Cystic Fibrosis Transmembrane Conductance Regulator
    Villamizar, Olga
    Waters, Shafagh A.
    Scott, Tristan
    Saayman, Sheena
    Grepo, Nicole
    Urak, Ryan
    Davis, Alicia
    Jaffe, Adam
    Morris, Kevin V.
    MOLECULAR THERAPY, 2019, 27 (10) : 1737 - 1748
  • [49] CYSTIC-FIBROSIS TRANSMEMBRANE CONDUCTANCE REGULATOR (CFTR)
    HIGGINS, CF
    BRITISH MEDICAL BULLETIN, 1992, 48 (04) : 754 - 765
  • [50] Tritherapy with cystic fibrosis transmembrane conductance regulator protein modulators in cystic fibrosis
    Colodro, Oscar Fielbaum
    Grell, Alberto Vidal
    Yarur, Alejandra Mendez
    Clerc, Camila Sobarzo
    ANDES PEDIATRICA, 2022, 93 (06): : 898 - 905