Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions

被引:16
|
作者
Fukushima, Toshio [1 ]
机构
[1] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan
关键词
Fermi-Dirac integral; Generalized Fermi-Dirac integral; Riemann zeta function; Sommerfeld expansion; NUMERICAL EVALUATION; ACCURATE METHOD; BOSE-EINSTEIN; APPROXIMATIONS;
D O I
10.1016/j.amc.2014.02.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the generalized Fermi-Dirac integrals, F-k(eta,beta), of orders k = -1/2, 1/2, 3/2, and 5/2, we explicitly obtained the first 11 terms of their Sommerfeld expansions. The main terms of the last three orders are rewritten so as to avoid the cancelation problem. If g is not so small, say not less than 13.5, 12.0, 10.9, and 9.9 when k = -1/2, 1/2, 3/2, and 5/2, respectively, the first 8 terms of the expansion assure the single precision accuracy for arbitrary value of beta. Similarly, the 15-digits accuracy is achieved by the 11 terms expansion if g is greater than 36.8, 31.6, 30.7, and 26.6 when k = -1/2, 1/2, 3/2, and 5/2, respectively. Since the truncated expansions are analytically given in a closed form, their computational time is sufficiently small, say at most 4.9 and 6.7 times that of the integrand evaluation for the 8 and 11-terms expansions, respectively. When eta is larger than a certain threshold value as indicated, these appropriately-truncated Sommerfeld expansions provide a factor of 10-80 acceleration of the computation of the generalized Fermi-Dirac integrals when compared with the direct numerical quadrature. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:417 / 433
页数:17
相关论文
共 50 条
  • [31] APPROXIMATIONS TO FERMI-DIRAC INTEGRALS AND THEIR USE IN DEVICE ANALYSIS
    SELVAKUMAR, CR
    PROCEEDINGS OF THE IEEE, 1982, 70 (05) : 516 - 518
  • [32] A note on the evaluation of the generalized Fermi-Dirac integral
    Mohankumar, N
    Natarajan, A
    ASTROPHYSICAL JOURNAL, 1996, 458 (01): : 233 - 235
  • [33] A generalization of the Euler-Maclaurin summation formula: an application to numerical computation of the Fermi-Dirac integrals
    Rzadkowski, Grzegorz
    Lepkowski, Slawomir
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 488 - +
  • [34] A generalization of the euler-maclaurin summation formula: An application to numerical computation of the fermi-dirac integrals
    Rzadkowski, Grzegorz
    Lepkowski, Slawomir
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 35 (01) : 63 - 74
  • [35] A Generalization of the Euler-Maclaurin Summation Formula: An Application to Numerical Computation of the Fermi-Dirac Integrals
    Grzegorz Rza̧dkowski
    Sławomir Łepkowski
    Journal of Scientific Computing, 2008, 35 : 63 - 74
  • [36] An accurate method for the generalized Fermi-Dirac integral
    Natarajan, A
    Mohankumar, N
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 137 (03) : 361 - 365
  • [37] Fermi-Dirac Integrals in Degenerate Regimes: Novel Asymptotic Expansion
    Birrell, Jeremiah
    Formanek, Martin
    Steinmetz, Andrew
    Yang, Cheng Tao
    Rafelski, Johann
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (07)
  • [38] FERMI-DIRAC INTEGRALS AND FERMI ENERGY FOR DEGENERATE NARROW-GAP SEMICONDUCTORS
    VANCONG, H
    BRUNET, S
    CHARAR, S
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 109 (01): : K1 - K5
  • [39] Quadrature formulas with exponential convergence and calculation of the Fermi-Dirac integrals
    Kalitkin, N. N.
    Kolganov, S. A.
    DOKLADY MATHEMATICS, 2017, 95 (02) : 157 - 160
  • [40] Solutions to the Fermi-Dirac Integrals in Semiconductor Physics Using Polylogarithms
    Ulrich M.D.
    Seng W.F.
    Barnes P.A.
    Journal of Computational Electronics, 2002, 1 (03) : 431 - 434