Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife

被引:0
|
作者
Wager, Stefan [1 ]
Hastie, Trevor [1 ]
Efron, Bradley [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
bagging; jackknife methods; Monte Carlo noise; variance estimation; BIAS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the variability of predictions made by bagged learners and random forests, and show how to estimate standard errors for these methods. Our work builds on variance estimates for bagging proposed by Efron (1992, 2013) that are based on the jackknife and the infinitesimal jackknife (IJ). In practice, bagged predictors are computed using a finite number B of bootstrap replicates, and working with a large B can be computationally expensive. Direct applications of jackknife and IJ estimators to bagging require B = Theta (n(1.5)) bootstrap replicates to converge, where n is the size of the training set. We propose improved versions that only require B = Theta (n) replicates. Moreover, we show that the IJ estimator requires 1.7 times less bootstrap replicates than the jackknife to achieve a given accuracy. Finally, we study the sampling distributions of the jackknife and IJ variance estimates themselves. We illustrate our findings with multiple experiments and simulation studies.
引用
收藏
页码:1625 / 1651
页数:27
相关论文
共 50 条
  • [21] A comparison of resampling and recursive partitioning methods in random forest for estimating the asymptotic variance using the infinitesimal jackknife
    Brokamp, Cole
    Rao, M.B.
    Ryan, Patrick
    Jandarov, Roman
    [J]. arXiv, 2017,
  • [22] A comparison of resampling and recursive partitioning methods in random forest for estimating the asymptotic variance using the infinitesimal jackknife
    Brokampa, Cole
    Rao, M. B.
    Ryan, Patrick
    Jandarov, Roman
    [J]. STAT, 2017, 6 (01): : 360 - 372
  • [23] JACKKNIFE EMPIRICAL LIKELIHOOD INTERVALS FOR SPEARMAN'S RHO
    Wang, Ruodu
    Peng, Liang
    [J]. NORTH AMERICAN ACTUARIAL JOURNAL, 2011, 15 (04) : 475 - 486
  • [24] JACKKNIFE
    MOSTELLER, F
    [J]. REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 1971, 39 (03): : 363 - +
  • [25] Jackknife empirical likelihood confidence interval for the Gini index
    Wang, Dongliang
    Zhao, Yichuan
    Gilmore, Dirk W.
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 110 : 289 - 295
  • [26] THE INFINITESIMAL JACKKNIFE AND MOMENT STRUCTURE ANALYSIS USING HIGHER ORDER MOMENTS
    Jennrich, Robert
    Satorra, Albert
    [J]. PSYCHOMETRIKA, 2016, 81 (01) : 90 - 101
  • [27] The Infinitesimal Jackknife and Moment Structure Analysis Using Higher Order Moments
    Robert Jennrich
    Albert Satorra
    [J]. Psychometrika, 2016, 81 : 90 - 101
  • [28] Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
    Jennrich, Robert I.
    [J]. PSYCHOMETRIKA, 2008, 73 (04) : 579 - 594
  • [29] Nonparametric Estimation of Standard Errors in Covariance Analysis Using the Infinitesimal Jackknife
    Robert I. Jennrich
    [J]. Psychometrika, 2008, 73 : 579 - 594
  • [30] Jackknife empirical likelihood confidence intervals for assessing heterogeneity in meta-analysis of rare binary event data
    Wang, Guanshen
    Cheng, Yichen
    Chen, Min
    Wang, Xinlei
    [J]. CONTEMPORARY CLINICAL TRIALS, 2021, 107