Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife

被引:0
|
作者
Wager, Stefan [1 ]
Hastie, Trevor [1 ]
Efron, Bradley [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
bagging; jackknife methods; Monte Carlo noise; variance estimation; BIAS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the variability of predictions made by bagged learners and random forests, and show how to estimate standard errors for these methods. Our work builds on variance estimates for bagging proposed by Efron (1992, 2013) that are based on the jackknife and the infinitesimal jackknife (IJ). In practice, bagged predictors are computed using a finite number B of bootstrap replicates, and working with a large B can be computationally expensive. Direct applications of jackknife and IJ estimators to bagging require B = Theta (n(1.5)) bootstrap replicates to converge, where n is the size of the training set. We propose improved versions that only require B = Theta (n) replicates. Moreover, we show that the IJ estimator requires 1.7 times less bootstrap replicates than the jackknife to achieve a given accuracy. Finally, we study the sampling distributions of the jackknife and IJ variance estimates themselves. We illustrate our findings with multiple experiments and simulation studies.
引用
收藏
页码:1625 / 1651
页数:27
相关论文
共 50 条
  • [1] Confidence intervals for quantile estimation using Jackknife techniques
    Roman-Montoya, Y.
    Rueda, M.
    Arcos, A.
    [J]. COMPUTATIONAL STATISTICS, 2008, 23 (04) : 573 - 585
  • [2] Efficient calculation of jackknife confidence intervals for rank statistics
    Newson, R
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2006, 15 (01):
  • [3] Confidence intervals for quantile estimation using Jackknife techniques
    Y. Román-Montoya
    M. Rueda
    A. Arcos
    [J]. Computational Statistics, 2008, 23 : 573 - 585
  • [4] A Swiss Army Infinitesimal Jackknife
    Giordano, Ryan
    Stephenson, Will
    Liu, Runjing
    Jordan, Michael, I
    Broderick, Tamara
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [5] The Bayesian Infinitesimal Jackknife for Variance
    Giordano, Ryan
    Broderick, Tamara
    [J]. arXiv, 2023,
  • [6] Jackknife empirical likelihood confidence intervals for the categorical Gini correlation
    Hewage, Sameera
    Sang, Yongli
    [J]. arXiv, 2023,
  • [7] Jackknife empirical likelihood confidence intervals for the categorical Gini correlation
    Hewage, Sameera
    Sang, Yongli
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 231
  • [9] The Infinitesimal Jackknife with Exploratory Factor Analysis
    Guangjian Zhang
    Kristopher J. Preacher
    Robert I. Jennrich
    [J]. Psychometrika, 2012, 77 : 634 - 648
  • [10] The Infinitesimal Jackknife with Exploratory Factor Analysis
    Zhang, Guangjian
    Preacher, Kristopher J.
    Jennrich, Robert I.
    [J]. PSYCHOMETRIKA, 2012, 77 (04) : 634 - 648