GENERALIZED CHARACTERISTIC POLYNOMIALS AND GAUSSIAN CUBATURE RULES

被引:4
|
作者
Xu, Yuan [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
generalized characteristic polynomials; orthogonal polynomials; Toeplitz matrix; Gaussian cubature rule; VARIABLES; MATRICES;
D O I
10.1137/140972810
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a family of near banded Toeplitz matrices, generalized characteristic polynomials are shown to be orthogonal polynomials of two variables, which include the Chebyshev polynomials of the second kind on the deltoid as a special case. These orthogonal polynomials possess a maximal number of real common zeros, which generate a family of Gaussian cubature rules in two variables.
引用
收藏
页码:1129 / 1142
页数:14
相关论文
共 50 条
  • [31] Quadrature rules of Gaussian type for trigonometric polynomials with preassigned nodes
    Stanić, Marija P.
    Tomović Mladenović, Tatjana V.
    Jovanović, Aleksandar Ne.
    Applied Numerical Mathematics, 2024, 200 : 399 - 408
  • [32] ERROR BOUND OF CERTAIN GAUSSIAN QUADRATURE RULES FOR TRIGONOMETRIC POLYNOMIALS
    Stanic, Marija P.
    Cvetkovic, Aleksandar S.
    Tomovic, Tatjana V.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (01): : 63 - 72
  • [33] Quadrature rules of Gaussian type for trigonometric polynomials with preassigned nodes
    Stanic, Marija P.
    Mladenovic, Tatjana V. Tomovic
    Jovanovic, Aleksandar Ne.
    APPLIED NUMERICAL MATHEMATICS, 2024, 200 : 399 - 408
  • [34] STRONG APPROXIMATION OF GAUSSIAN ? ENSEMBLE CHARACTERISTIC POLYNOMIALS: THE HYPERBOLIC REGIME
    Lambert, Gaultier
    Paquette, Elliot
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (01): : 549 - 612
  • [35] On correlation functions of characteristic polynomials for chiral Gaussian unitary ensemble
    Fyodorov, YV
    Strahov, E
    NUCLEAR PHYSICS B, 2002, 647 (03) : 581 - 597
  • [36] Cubature formulae and orthogonal polynomials
    Cools, R
    Mysovskikh, IP
    Schmid, HJ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 127 (1-2) : 121 - 152
  • [37] Generalized Gaussian quadrature rules for systems of arbitrary functions
    Ma, J
    Rokhlin, V
    Wandzura, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) : 971 - 996
  • [38] The existence of Gaussian cubature formulas
    Lasserre, Jean B.
    JOURNAL OF APPROXIMATION THEORY, 2012, 164 (05) : 572 - 585
  • [39] ON BIVARIATE GAUSSIAN CUBATURE FORMULAS
    SCHMID, HJ
    XU, Y
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (03) : 833 - 841
  • [40] MULTIVARIATE GAUSSIAN CUBATURE FORMULAS
    BERENS, H
    SCHMID, HJ
    XU, Y
    ARCHIV DER MATHEMATIK, 1995, 64 (01) : 26 - 32